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» Thermal inertia allows decoupling the electrical & thermal demand without loss of comfort
— opportunity for demand response!



Introduction & motivation

» Many research/policy papers on ‘the value of demand response’:
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Source: A. Arteconi et al., Active demand response with electric heating systems: Impact of market
penetration, Applied Energy, Vol. 177, 2016, pp. 636—-648.
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Limiting assumptions in current modeling efforts

>

>

v

v

v

Representation of physical/technical characteristics of the DR resource;
Non-disruptive end-energy service (e.g. guaranteed thermal comfort);
Perfectly controllable DR;

Objective DR provider perfectly aligned with system/aggregator objective;

Limited heterogeneity in the representation of the DR resource;

Energy

‘ Ville
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Limited heterogeneity in the representation of the DR resource;
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Energy

Research questions R\
/ille

1. The system perspective:

> How can we study the system value (arbitrage & operating reserves) of demand response with
thermostatically controlled loads?

> What is the impact of requiring thermal comfort at all times?

> What is the impact of limited controllability on the system value?

> Source: K. Bruninx et al., ‘Valuing Demand Response Controllability via Chance Constrained
Programming’, IEEE Trans. Sustain. Energy, vol. 9, no. 1, 2018.

2. The aggregator perspective:
> How can we study the strategic participation of an aggregator in a market while guaranteeing that all
user-defined comfort constraints are met?
> ... interaction between an aggregator and its demand response providers?
» ... if demand response providers are limitedly controllable?
» Source: K. Bruninx et al., On the Interaction between Aggregators, Electricity Markets and
Residential Demand Response Providers, submitted to IEEE. Trans. Power Syst., 2018.
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Demand response & unit commitment models

Minimize E[Total Operating Cost]

Subject to
» D + DR = generation + RES;

Technical constraints of power plants and
energy storage systems;

v

v

Limited predictability wind and solar
— Probabilistic reserve requirements;

v

Physical demand side model.

Source: D. Patteeuw et al., Integrated modeling of
active demand response with electric heating
systems coupled to thermal energy storage systems,
Applied Energy, Vol. 151, 2015, pp. 306-319.

Heating system models

3-way valve DHW/SH Ive ST

Day-zone Night-zone

User behavior and weather data
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Demand response & unit commitment models

Minimize E[Total Operating Cost]

Subject to
» D + DR = generation + RES;

» Technical constraints of power plants and
energy storage systems;

» Limited predictability wind and solar
— Probabilistic reserve requirements;

» Physical demand side model.

Source: D. Patteeuw et al., Integrated modeling of
active demand response with electric heating
systems coupled to thermal energy storage systems,
Applied Energy, Vol. 151, 2015, pp. 306-319.
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Endogenous probabilistic reserve sizing and allocation in UC models '*.
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Source: Bruninx, K., Delarue, E., Endogenous probabilistic reserve sizing and allocation in unit
commitment models: cost-effective, reliable and fast, IEEE Transactions on Power Systems, vol. 32,
no. 4, 2017.
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Endogenous probabilistic reserve sizing and allocation in UC models
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Endogenous probabilistic reserve sizing and allocation in UC models

+ Approximation of expected deployment
costs, hence endogenous reserve sizing
possible and close to optimal UC schedules;

+ Fast;

+ Ensured feasibility of real-time deployment of
energy storage and DR-based regulation;

— Conservative, especially for energy storage
and DR-based regulation services.
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Value of controllable DR [ SR [ NSR [ ES 2227 RES [ SH DHW [ o+

» DR-arbitrage — more cost-efficient upward
reserve provision;

» DR-reserves — higher uptake RES-based
generation, while guaranteeing thermal
comfort.

Upward flexibility (GW)

Temperature (°C)
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Energy
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Challenging the guaranteed thermal comfort-assumption %.
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Energy

Value of thermal discomfort N Vi
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Challenging the perfectly controllability-assumption

Minimize E[Total Operating Cost]

Subject to

» D + DR = generation + RES
» Technical constraints of power plants and energy storage
systems;

> Limited predictability wind and solar
— Probabilistic reserve requirements;

> Physical demand side model.

Probability

DR(u, o)

DR
Heating demand
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Challenging the perfectly controllability-assumption

Minimize E[Total Operating Cost]

Subject to

» D+ DR = g§neration + RES
— Pr(D + DR < generation + RES) > 1 —¢;

» Technical constraints of power plants and energy storage
systems;

» Limited predictability wind and solar
— Probabilistic reserve requirements;

» Physical demand side model.

Probability

DR(p, o)

€

DR
Heating demand
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Value of limitedly controllable DR-based arbitrage
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Energy

Concluding remarks - the system perspective N\
/ille

A novel unit commitment model considering a physical demand response model & RES forecast
uncertainty allows illustrating that

» significant operating cost reductions may be attained by leveraging demand response with
electric heating systems for arbitrage & ancillary services;

» this value can be increased if thermal discomfort is allowed to a limited extent;

» imperfectly controllable demand response may hold limited value for a risk-averse power
system operator.
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The aggregator perspective .

» How can we study the strategic participation of an aggregator in a market while guaranteeing that
all user-defined comfort constraints are met?

> ... interaction between an aggregator and its demand response providers?

> ... if demand response providers are limitedly controllable?
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Literat i Energy
Iterature review
N\ |8
Interaction DR aggregator — electricity markets

» Price-taking agent — optimization models (Xu et al., 2017, Mathieu et al., 2015, Zugno et al.,
2013);

» Strategic price-maker — Stackelberg Game — bilevel optimization problem/MPEC (Kazempour
et al., 2015, Kardakos et al., 2016).

Interaction DR aggregator — DR provider

> Leader-follower — Stackelberg Game — bilevel optimization problem/MPEC (Li et al., 2016, Yu
et al., 2016, Zugno et al., 2013);

» Collaboration — Nash Bargaining Game — optimization problem (Contreras et al., 2017, Hoa et
al., 2016, Ye et al., 2017)

Limited controllability
» System studies/non-strategic aggregators — chance constrained programming;
» Uncertain availability of DR resources (Li et al., 2015, Zhang et al., 2017);
» Limited controllability (Bruninx et al., 2017).
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Energy

Methodology: A tor’ ti
ethodology: Aggregator's perspective \ Ville
Objective: maximize operating profit

Maximize M* = Z RA(Aﬁt, DP)—wa-)\t,wqiig
teT we

» Revenue RA()\ﬁt, Df!), based on retail rate )\,,AJ and DR load DF;

> Expenses in whole-sale market > 7w Arw-grer, With A, the market clearing price.

subject to
P(Q*>D;!, VteT)>1—¢

» Chance constraint: procure sufficient electricity to cover the limitedly controllable DR load DI
with a probability of (1 — €)-100%;

D' =(1+46%)- Y NBy-dy+6"", VteT
heH

» Assume 67 and 6~ follow a Gaussian distribution — SOC
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Energy

Methodology: Market operator’s perspective N

Objective: maximize total surplus w.r.t. the bids and offers of the market participants

Maximize Y [P de .o +P™5-q2%5 N P - g ]

teT i€T
Subject to:
- Wt,wfzgi,t,w+dt,w +¢;F =0 (\w) Market clearing condition (price)
< 0< gitw <G Generation limit (conventional)
0<dio <D Demand
0 < wew < Wi Generation limit (RES)
0< g% <@ Aggregator bid limit
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Methodology: Demand Response Provider’'s perspective gl“-i.. .

Objective: minimize the cost of electric space heating and hot water production
Minimize Z)\ﬁt-dft
teT

subject to Heating system models

Ont — Ohe—1 = G(dh', Ch, Ph, An, En,t)

On,t <0h,:<0On., VteT

Source: D. Patteeuw et al., Integrated modeling of active demand — P
response with electric heating systems coupled to thermal energy
storage systems, Applied Energy, Vol. 151, 2015, pp. 306-319. Consumer behavior
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Methodology: Aggregator — Market Interaction N\ [y
Jille

Maximize Operating profit
subject to

Chance constraints: P(Qf** >D{", teT)>1—e

Market clearing: (At.w, gror) = argmax{ Total surplus s.t. market clearing conditions}

> Assume: aggregator (leader) decides on bid in the wholesale market (follower);

» Bilevel optimization problem — KKT conditions market clearing problem — MPEC — MIQCP
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Methodology: Aggregator — Demand Response Provider Interaction |/ EZI(;‘
/UL
Retailer ~ Stackelberg Game
> flat retail rate )\ﬁt = A" — Consumers minimize their energy demand;
> d,’,'ft: parameter in the retailer's problem
» Assume: best possible case for consumer — profit-neutral retailer:

S NByRY =D " Aew

heH teTweR
Aggregator ~ Nash Bargaining Game, S(Stackelberg Game) € S(Nash Bargaining Game)
> DR providers collaborate with the aggregator;
> Total benefit of this collaboration:

B = ZNBh R’l-;{ —Zzﬂ'w' )\t,w'q?,%.)g

heH teTweQ

» Division of benefit — Nash Bargaining Game, i.e., contract, not on day-to-day basis;

> Aggregator can only influence >°. > oTw At Grey on day-to-day basis;

> No restrictions on formation retail rate & guaranteed thermal comfort? — S(Stackelberg Game)
€ S(Nash Bargaining Game)!
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Equivalent MIQCP

Retailer

s.t.

Aggregator

Maximize —E E Tw Aw Qoo

teTweR

Chance constraint: P(Q;%¢ >D;', teT)>1—¢

Profit neutrality: Zhe’HNBh.R}T{:ZtETZweﬂﬂw.Atvw.q?fdg
d. assumed given

Market clearing constraints

Maximize —E g Ww')\t,w'Q?,ig

teTweR

sit.  Chance constraint: P(Q{** >Df', teT)>1—¢
Demand response model

Market clearing constraints
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Energy
Case stud

We'll show how . ..

> the aggregator shifts heating demand from high to low price periods, without jeopardizing the
thermal comfort of its consumers;

> the benefit of the aggregator - consumer collaboration decreases if demand response loads become
less controllable. Liquid intraday and balancing markets limit impact limited controllability.

Data & assumptions

» ~ isolated Belgian power system, additional gas-fired generation to cover electrified heating
demand,;

» Wind energy ~ 50% of the annual energy demand (excl. electric space heating);

> Number of DR providers >, ., NBy = 10° — average 2030 low-energy building;

» Stochastic occupancy model — equivalent comfort constraints;

> Reference case: retailer serving a perfectly controllable/predictable heating demand;

> Most results for 316" day of the calendar year (abundant wind power during first hours of the
day, median of heating season conditions).
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Energy

Optimal bidding strategies — Perfectly controllable heating loads S\ [

» Aggregator avoids high AP* period by shifting heating demand D to the night;
» Significant pre-heating (space heating) and pre-charging (hot water tanks), but day-zone & hot
water temperatures remain within user-specified comfort constraints.
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Energy

timal bidding strategies — Limitedly controllable heating load
Optima gs gies y C b ating loads =\
» Risk-averse aggregator is able to maintain day-ahead price profile AP*, but more procurement
during the high price period,;
» Procured demand D during the night remains approximately the same, but part of this procured
quantity is ‘reserved’ to deal with unexpected real-time deviations;

» Excess/deficits can be sold/bought in intraday markets: risk-averse aggregator is more likely to
sell, but sees lower prices \IP.
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Sensitivity analysis w.r.t. ¢, ¥ ~ N(0,c") and 6"F ~ N(0,c"F)
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Figure: Change in benefit B of the consumer-aggregator cooperation for different ¢, 67 ~ N(O, ch) and
VP ~ N(O, O'NP) values for the 3162 day of the calendar year.
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Sensitivity analysis w.r.t. heating demand ‘
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Figure: Change in benefit B of the consumer-aggregator cooperation for different days of the heating season.
of was set to 0.1, VP equals 100 MW.
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Energy

Concluding remarks - the aggregator's perspective S\ [
Model

» Strategic interaction aggregator — wholesale market ~ Stackelberg game;

» Cooperation aggregator — DR provider ~ Nash Bargaining game on division benefits,
solution equivalent Stackelberg game € set outcomes of Nash Bargaining Game;

» Limited controllability of DR providers — chance constraints.

Case study

» Aggregator may lower wholesale prices by actively managing limitedly controllable resources,
respecting consumer’s comfort constraints;

> As the DR resource becomes less controllable and the aggregator becomes more risk-averse — the
aggregator's profit decreases, but impact is limited if intraday markets are sufficiently liquid.
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C ludi k Energy
oncluding remarks \ Ville
To sum up:
» Two different perspective, both illustrating significant benefits in DR with TCLs;
» Violating thermal comfort leads to system-wide savings, but compensation available to consumers
may be insufficient;
>

Impact limited controllability depends on perspective & model assumptions: system perspective
may be too conservative, whereas intraday markets may be represented as too liquid.

Future work:

>

>

v

Consumer-centric perspective;
Sub-rational consumer behavior;

Other aggregator strategies - e.g., risk-aversion;
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