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Sustainable Energy has Become Priority for

All Nations

(Figures for the U.S. ~2000)
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e.g., replacing 50% of current fossil would require ~500 GW,_
... only nuclear is credible
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Together with Its Promise, Nuclear Power Has

Had a Number of Issues / Problems of Concern

o Safety / Security assurance
* Proliferation potential

* Long-term uranium supply

o Spent-fuel disposition
 High cooling-water demand

However, during the last 30 years, there have been
significant advances addressing all these issues

Any re-examination of nuclear power arising from
global warming or other concerns should be
made In the light of these advances.
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New, Advanced Reactors Will Be Evaluated

Using Multiple Criteria

Gen IV goals

e |nherent safety / security

= Proliferation resistance

e Fuel-cycle sustainability

e Competitive Cost of Electricity (COE)

Additional requirements

Unit-size flexibility / modularity

Low water consumption

Hydrogen production or other apps.
Co-generation

Low Ops. & Main. staff requirements
Minimum spent nuclear fuel (SNF)
Manageable ultimate waste form

Given the historic ~40-year penetration time for a
new energy technology, we must get started
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The High-Temperature Modular Helium Reactor

(MHR) Meets the Gen IV Requirements and More

< Low power density, low power rating and
negative temperature coefficient (passive,
conduction decay-heat removal)

= Refractory fuel (high temp capability)
= Graphite core (high temp stability)
= Helium gas coolant (inert)

= Secure core with scheduled fuel
replacement and high graphite/fuel
ratio (proliferation resistance)

< Low water demand, dry-cooling/desalination
= Modular construction (size flexibility)

< Demonstrated reactor technologies

_ _ (first-generation readiness)
Designed first for

safety, then made
economic
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= Low O&M staff requirement, and
e Competitive COE



Several Uranium / Thorium Fueled MHRs Have

Operated Worldwide

Power Reactors Research Reactors
Peach Bottom 1 THTR Dragon AVR HTTR
1966-1974 1986-1989 1966-1975 1967-1988 2000-
Power Level:
MWI(t) 115 842 750 20 46 30 10
[ _Mwe _____ ) |- oo -0 ) oo Cas ool _C
Coolant
| _ Pressure Mpa_ _} |_ _ __ 25 ___ -8 ____L___._ 4| ---- CAU I = N DR SRR R S
| _ InletTemp, °C _} | _ ¢ s’ __ |- 46°C _ _ | ___ 20°C ___| |--- 30°c | __ 2100C _ _ |___3%°C___| 250°C/300°C _
| _ OutletTemp,  °C N (- ORI R 785°C _ _ _pb___ o __ | |--- 750°C _ _ | ___ 950°C _ _ f_ ¢ 850°C/950°C _ | _700°C/900°C _
Fuel type (U-Th)C , PyC (U-Th)C , TRISO (U-Th)O , TRISO (U-Thc ,PyC | (U-Th)O , TRISO (U-Th)C , PyC (U-ThO , PyC
coated particles particles particles particles
Peak fuel temp, °C ~1000 °C 1260°C 1350°C ~1000 °C 1350 °C ~1250 °C
[Fuelform ™~~~ ~ ~ ] | Graphite compacts | Graphite Compacts | Graphite Pebbles ~ Graphite Hex | Graphite Pebbles ™~ ~| Graphite compacts | Graphite Pebbles ~
in hollow rods in Hex blocks blocks in Hex blocks

** More than 30 CO2-cooled, graphite-moderated reactors have been buit and 10 are nowoperating in the United Kingdom for power production.
TRISO particles are fuel kemels coated with SiC and PyC

Renewed world-wide interest in He-cooled reactors because
of their safety and high temperature applications
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MHRs Represent A Fundamental Change In

Reactor-Safety Design Philosophy

4000 —1 4000

3000 RADIONUCLIDE — 3000

LARGE HTGRs RETENTION IN
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________ i FSV e
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MAXIMUM ACCIDENT CORE TEMPERATURE (°C)

2000 | AAAAAAAAA 2000
PEACH BOTTOM A5
______ L |
1000 — " ?]" — 1000
T
-
MHR
I I I I
1967 1973 1980 1985

CHRONOLOGY

... a proven core, but sized to tolerate even a severe accident
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TRISO Fuel Form Is Key to High Temperature, Fuel

Utilization, Containment & Proliferation Resistance

TRISO Coated Fuel Particles:
* Lots of cladding - extremely strong
* Little fuel - fully encapsulated

Each fuel particle forms a separate pressure
containment vessel for the kernel (to 1000 atm)

\\-».._Ceramic Coatings U, Th, Pu have been fabricated
“Fuel Kernel (U, Pu, Th, TRU) and tested in reactors (limited TRU)

Prismatic Block
or Pebble Bed variants
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Excellent Quality UO, TRISO Fuel Has Been

Fabricated Throughout the World

As-Manufactured Fuel Failures

10 2 -
Ft. St. Vrain Specs
< FSV8‘
10 ; Ve &
Early US fuel >
10 4 -
Today’s Specs
105 | s S (CHINA
Modern |BSigi=8
German fuel U%Rel (JAPAN)
10 -6 HOBEG, 82
1970 1975 1980 1985 1990 1995 2000
year

However, real commercial scale must be re-established

g ozo GENERAL ATOMICS



MHR Approach to Safety and Security Has

Below-Grade Construction, No Active Safety Systems

e All nuclear
components
below grade

Inventory release

e Heat removed passively
during loss-of-coolant events
~6-10
watts/cc
o
% 1800
particles & *° [ .
Stable tO g 1400 : Depressurize To Ground
beyond § 1200 [
maximum 1000 B Pressurized
accident s00 | 600 MW(t)
temperatures oL | | |
0 2 4 6

10

Time After Initiation (Days)

oxo GENERAL ATOMICS




TRISO Particles, Graphite Moderator & Helium Coolant

Enable Flexibility in Fuels and in Applications

Common
reactor core;
intrinsically
safe design

Desalination
District Heat

TRISO fuel
in fuel blocks
or spheres

Hydrogen
Key is TRISO coated fuel, secure to 2000°C
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Flexible Core Design Can Meet Different

Power Needs -- Module Size and Number

350 MW(t) 450 MW(t) 600 MW(t)

CLL L

(T T T 71T

LT

L1110
\

66 Columns 84 Columns 102 Columns
660 Elements 840 Elements 1020 Elements

25 MW(t) B 7o comen
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Higher-Power Plants Are Comprised of a
Number of Modules

Costing is typically for 4-module a configuration, but
there is only modest cost penalty for fewer modules
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Designed for Passive Safety, Acceptable COE

for the MHR Is a Non-Negligible Challenge

MHR cost disadvantages
Low power density
High-cost TRISO fuel form

MHR cost advantages
Absence of active safety systems
High conversion efficiency
High fuel utilization
Absence of steam-processing equipment
Low Ops. & Main. (O&M) costs

The net result is distinct cost advantage for
advanced MHRs
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As a Near Term, MHTGR Could Generate Steam

at 1000°F (540°C) and 2500 PSI (17 MPa)

Reactor
Module
497°F
a2
\

I =

L4

W | |
W
//"-

1000°F

Turbine Generator

e Uses components
available today

e Completed
v’ Preliminary Design

e

L v" NRC Safety Evaluation

 Matches naturally to
district heating

....Steam quality equivalent to modern fossil-fired steam power plants
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High Temperature Gas Reactors Are Well Suited to

a More Efficient Brayton Cycle ... Advanced MHR

Power Conversion

M 190°C {915 F)

50% Increase -
50 f=
o 46.7 %
(®)
& STEAM CYCLE
8 {(RANKINE) GAS TURBINE
u“: STEAM CYCLE CYCLE
= 40 |- MHR
2 o (BRAYTON)
-l
o
WATER ;
#"" REACTOR |
30
200 600 1000

TURBINE INLET TEMPERATURE, °C

Exhaust heat from the pre- and
Inter-coolers could be applied
to district heating, but needs re-
optimization

16

7.03Pa (1R5ps)
GENERATOR [\ 510°C {350 F)
MR 1 2.6MMPa (3®psl)
950°C (1562F) TURBRE —
7.0MPa (1016psi) % RECUPERATOR
et
15°C (257F)
2590MPa (376psh)
62 °C
% PRECOOLER
FROM HEAT
i
HIGH PRESSURE | |
COMPRESSOR '{
| -
FROM HEAT
SNK =P %
52 °C |

26°C (79F)

NTRCOOLR \1 257MPa (373psh)

LOW PRESSURE
COMPRESSOR
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The Direct Brayton-Cycle PCU Offers Many

Advantages

Power Conversion Unit (PCU)

« ~50% efficiency

* Vertical orientation

e Short interconnect

» Single Shaft, w/ flexible coupling
 Integrated generator

» Electromagnetic bearings

* Recuperator & Intercooler

« Asynchronous with frequency conversion

e Completed Preliminary Design
In Russia in 2003 @ 285 MW(e)

e Component testing in progress

= Early generation might, e.g., use
two half-sized PCUs
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MHR Plants Size and Power Conversion Options

Range From Immediate Term To Longer Term

RELATIVE GENERATION COST

>

140 MWe
MHTGR

» 350 MWt

Steam cycle

39% Efficiency
700°C Core outlet
Proven tech

Near term (~6 yr)

450 MWt 290 MWe
Combined cycle GT-MHR
48% Efficiency

850°C Core outlet = 600 MWt

Brayton cycle

48% Efficiency
850°C Core outlet
More R&D req’d

= Longer term (~15 yr)

Heat exch. req’d ©
Modest R&D req’d ©
Medium term (~10 yr)*®

600 MWt

Brayton cycle

58% Efficiency
1200°C Core outlet
More R&D req’d
Longer term (~20 yr)

MORE PROVEN

TECHNOLOGY

18

LESS PROVEN
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GT-MHR Ops. & Main. (O&M) Staffing Less Than

Light Water Reactors (LWRSs)

COMPARISON OF STAFF FOR
CURRENT NUCLEAR AND TARGET GT-MHR PLANTS
500
Reactor equipment Positioner Refueling  Reactor
maintenance and machine  auxiliary
repair building building
Crane central room
400 -
i Electrical-technical
ol e building
L 2
: -
z |/
3 300 |- -
o
w
o
6
& 200 |- 4-module
w
m
: GT-MHR
-
Pow
100 o ~n:|‘\'lc" c.u Img_
o L M 1 g |
US LWR EUROPEAN LWR Reactor containment building
(975%) (540%) [] (241*) **
B oreraTioNs [} MAINTENANCE [7] ENGINEERING ADMINISTRATION )
Little Balance-of-Plant
* Total Number of Personnel ** Supplemented by COSO staff of 13 personnel ~ owcmosm o
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Larger Module Sizes & Advanced Conversion

Technologies Reduce NOAK Electricity Costs
All ~1000 MWe installations

1.0 1 __ . =GENIlILWR
T (ABWR, SYS 80+)
pres)
7))
o]
o 45%
® 060 e @0 |- - - - = GEN Ill+ LWR
- (AP1000, ESBWR)
-
a 05
- 0.46
N Needs re-
E exam for
o single
< modules
0.0 -
4x350 MW(t) 4x450 MW(t) 4x600 MW(t) 4x600 MW(t)
MHTGR CC-MHR GT-MHR VHTR
Efficiency 39% 48% 48% 58%
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Gas Reactors Are Well-Suited for Air Cooling

Advantages

= Less heat/MWe rejection due to higher efficiency
= Larger AT is available for heat rejection

e Heat is rejected over a range of temperatures

< Reduction in efficiency is smaller for higher heat
rejection temperature

Efficiency is nearly restored with small water
cooling, which can be applied to desalination or
district heating

Disadvantages

= Either fan power or cooling-tower cost
< Modestly reduced efficiency

= Noise pollution

Economic optimum looks like a mix of wet and dry
cooling, depending on electricity and water costs
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As Efficiency Increases, Normal Electrolysis

Becomes Increasingly Attractive for H, Production

Well-established technology
Operational flexibility

Amenable to co-generation (day-night)
 Permits separation of facilities
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Nonetheless, High-T is Well-Suited for Centralized H,

Production by S-l or HTE

Heat

.’ ll>0 2800 o 1 2 04 + 50, +Hu;
/ \ 50 vio HO + 50 vio Hy 150°c-950°c r 25 vlo H:0 + 75 vio He
! s 120,+S + ,l O z,:} ",f_.:”r_;‘._. '%H‘;‘:--‘”-._?.. ] ‘é"""v': 7

NIV ADLE e LN

<120°C —i
|Gasb‘ght Electrolyte I ~1 mm

'fl\ff_},:' .4 J,I SOy + 2HI QT' __,):* /\'LIP/\’ —
/ Heat 20:=p Oz + de
241 (1 H,0) 1y (H;0) ,
\ Heat /
e Oxygen

&

28 >300°C

( 2H) e Iy + Hy

-3 >

< High Temperature Electrolysis
(HTE) Process

Sulfur-lodine (S-1)

Thermochemical Process
Both very much in the R&D stage
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Could a Thermal MHR Reactor Burn Transuranics

(TRU)? ... Yes, Using Unique Features of the MHR

No void reactivity transients

- Fixed Graphite Moderator

« He coolant transparent to neutrons
—> Pure TRU or LEU-boosted cores

Good neutron utilization
= | ow interaction with fuel containment & low radiation

damage
= High probability of interaction with fuel content (kernel)
Large specific destruction rates TRISO

Full containment to high burn-up

= Small-scale, encapsulated fuel with
strong, long-lived enclosure

= High burn-up without multiple fuel re-
cycling ©—> >60% fuel utilization
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Flexibility of MHRs Provides Both LWR TRU

Destruction and Steady-State Self-Processing

With “Deep Burn,” mixed-core MHRs can be
used as the base reactor for future sustained
nuclear power growth

High temperature, high efficiency, passive safety,
low waste production, attractive waste-form

TRISO
Process
+Refab.

LEU + Spent Fuel (TRU)

33 kg TRU/GW,_-yr of - R o S
Weap?”'unsg'table Repository limit dominated by
Dregs short-lived fission products

...or burn “dregs” in fast reactors a la GNEP
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Deep Burn MHR Strategy Could Extend U.S.

Yucca Mtn. (or equivalent) for ~Century

Nuclear Power (GWe)

Waste TRU Actinides (Tons)

Nuclear Hydrogen (MT/yr)
| v
1400 280 " 14000
2% Annual Nuclear Power Growith Y
1200 240 Q 12000
X ? 4
Natural U used [(MT) ( MT.}
1000 200- / 10000
: S Z
0 Waste Accumulation Y i i e N G 8000
All LWRs once through y jusiefRSIeln
(present strategy) @O p
600 120 | ~ / 4 MT 6000
= ¢
400 80 £ : L3 MT YM | Perfarmance-Based 4000
Y\ = LLast | 3
\%8 0 Limit Estimates (EPRI 2006)
I Start | | ogD S IWR
200 40 RS | - | MHR TRU Waste_ 2000
L 1 MT Nat. U used Aeelujatidh
P :
0 20 40 50 60 80 100 120 150
years
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In Summary, MHRs Go Far Towards Satisfying

Multiple Advanced-Reactor Criteria

Gen IV

e Inherent Safety / Security R
= Proliferation resistance V

e Fuel-cycle sustainability \

e Competitive COE v (V)
Additional

e Unit size flexibility / Modularity R
e Low water consumption R
= Process heat (H,) R
- Manageable spent-fuel form Y
e Low O&M requirements / Costs N N
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... but We Also Continue to Explore

Improvements and New Applications

e Dry cooling

e Desalination

e Extended fueling duration

e TRU destruction

e Size and PCU flexibilities

e Dual-application / co-generation

e Hydrogen production for synfuels, etc.

And we remain open to requirements /
suggestions of interested parties
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Summary and Conclusions

e The MHR goes far towards satisfying the
Gen 1V, et al., goals

— Inherently safe, simple and modular - well
suited to small / medium grids

— Flexible with regard to fuel cycle and type
— Versatile in its heat applications

— In its simplest form, ready for deployment
today, albeit with a COE penalty relative to
more advanced versions

e To meet the MHR’s full potential, three
ISsues remain
— Completion of turbine PCU development
— Creation of commercial TRISO fuel supply
— Reactor-scale system demonstration
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