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Abstract: General-purpose processors are often unable to exploit the parallelism inherent to the software 

code. This is why additional hardware accelerators are needed to enable meeting the performance goals. 

NISC (No-Instruction-Set Computer) is a new approach to hardware-software co-design based on 

automatic generation of special-purpose processors. It was designed to be self-sufficient and it 

eliminates the need for other processors in the system. This work describes a method for expanding the 

application domain of the NISC processor to general-purpose processor systems with large amounts of 

processor-specific legacy code. This coprocessor-based approach allows application acceleration by 

utilizing both instruction-level and task-level parallelism by migrating performance-critical parts of an 

application to hardware without the need for changing the rest of the program code. For demonstration 

of this concept, a NISC coprocessor WISHBONE interface was designed. It was implemented and tested in 

a WISHBONE system based on Altium’s TSK3000A general-purpose RISC soft processor and an analytical 

model was proposed to provide the means to evaluate its efficiency in arbitrary systems. 
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1 Introduction 

Embedded computer systems are no longer used only as simple control devices. Instead, today’s 

embedded systems have to efficiently perform complex tasks and algorithms despite increasingly 

stringent design constraints and shrinking time-to-market. Traditional software-centered design 

approach offers high designer productivity, but low design quality in terms of performance and logic 

utilization. The key for increasing the design quality is the migration of computationally-intensive parts 

of the system’s task to hardware. Since general-purpose processors are often unable to exploit the 

parallelism inherent in the software code, these hardware accelerators provide an effective way to meet 

the design’s performance goals for certain classes of applications.  

Hardware acceleration can be accomplished by adding application-specific coprocessors to the system 

or by customizing existing processors. Custom hardware is conventionally designed at the register 

transfer level (RTL), which entails manually coding the RTL model in a hardware description language 

(HDL), such as VHDL or Verilog. This process is often tedious and error-prone and limits the designer 

productivity. To overcome this problem, it is necessary to raise the level of abstraction for the hardware 

design and use special tools to synthesize the actual circuitry. Such design approaches include High-level 

synthesis (HLS), Application-specific instruction set processors (ASIPs) and the No Instruction Set 

Computer (NISC).  

HLS and ASIP techniques are commonly used to design custom hardware, but their effectiveness and 

scope of use are limited. HLS usually supports only a subset of a high-level programming language and is 

only effective for small-size problems. Also, synthesis results tend to be unpredictable and so the 

designer can only try to meet the design constraints by trial-and-error methods. AISPs, on the other 

hand, rely on a limited number of custom instructions to increase the system’s performance. The 

number of custom instructions is limited by the instruction decoder and some ASIPs even limit this 

number to a single custom instruction. Design of special datapath extensions is also required and it faces 

the same productivity vs. performance problems as designing any custom hardware.  

NISC [1][2] addresses these limitations by eliminating the instruction abstraction and compiling 

programming language code directly to datapath control words using a special cycle-accurate compiler 

[3]. In this way, this approach keeps the best of both the world of general purpose processors and the 

world of custom hardware design. NISC processor’s architecture can be manually modeled in an 

Architecture Description Language (ADL) called Generic Netlist Representation (GNR) [4], automatically 

generated or selected from a library of standard or previously designed architectures. NISC Toolset [5] 

generates the RTL model of the processor and control words for the desired application to be 

implemented in the desired technology, whether FPGA or ASIC.  

NISC approach utilizes instruction-level parallelism (ILP) to speed up the execution of an algorithm and 

the generated processor is capable of executing several equivalent RISC instructions in a single clock 
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cycle. The additional prebinding mechanism enables simple I/O and interrupts [6] and in this way the 

scope of applications for which a NISC processor can be used is extended to control tasks of a classical 

microcontroller. The communication interface for the NISC processor [7] enables the use of multiple 

NISC processors in the system. It enables exploiting the system’s available task-level parallelism by 

parallel execution of the system’s tasks on different NISC processors which further accelerates the 

application.  

NISC approach was designed to be self-sufficient and it eliminates the need for other processors in the 

system. However, that represents a problem when attempting to integrate a NISC processor into an 

existing system. In the case when a large base of non-portable legacy code optimized for a particular 

general purpose processor exists, we suggest a coprocessor-based approach to take advantage of the 

NISC technology and accelerate desired applications. This approach allows utilizing both instruction-level 

and task-level parallelism by migrating performance-critical parts of the application to hardware without 

the need for significant changes to the rest of the program code.  

One of the major design challenges of the coprocessor approach is the integration of the NISC processor 

with other IP cores in the system. When designing SoCs, standard bus architectures are usually used, but 

the NISC processor itself isn’t compatible with any of the specifications. Standard bus architectures 

simplify the process of system integration, shorten time to market and support portability and reuse of 

IP cores. Renowned SoC bus architectures of the day include ARM Advanced Microcontroller Bus 

Architecture (AMBA), IBM CoreConnect, WISHBONE and Altera Avalon. The use of standard bus 

architectures also provides the opportunities for using special tools that automatically generate bus 

interfaces and interconnections, in this way further shortening time to market and reducing the 

possibility of human error. A standard bus interface for the NISC processor enables its simple integration 

in a wide variety of systems with different processors and peripherals.  

In this paper we present the WISHBONE bus interface for the NISC processor [8] and propose the use of 

the NISC processor as a loosely-coupled application-specific coprocessor in WISHBONE-based systems. 

The NISC WISHBONE Interface was designed, implemented and tested in a WISHBONE system based on 

Altium’s TSK3000A general-purpose RISC soft processor using an Altium LiveDesign Evaluation Board 

with a Spartan3 FPGA and a Xilinx ML506 board with a Virtex-5 FPGA.  

2 WISHBONE bus architecture 

The WISHBONE System-on-chip (SoC) architecture for portable IP cores [8] is a flexible design 

methodology developed by Silicore Corp. targeted at SoC integration and design reuse. This is 

accomplished by defining a standard interconnection scheme and data exchange protocols. WISHBONE 

specification defines a single, simple, logical, fully synchronous MASTER/SLAVE bus and IP core 

interfaces that require very few logic gates. It supports different technology-independent 

interconnection topologies ranging from simple point-to-point and shared bus interconnections to data 

flow interconnections and complex switch fabrics. It also supports a full range of standard data transfer 

protocols including SINGLE READ/WRITE cycles, BLOCK READ/WRITE cycles and read-modify-write 
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(RMW) cycles with various data sizes and byte ordering. A handshake mechanism enables flow control 

and communication between different-speed cores.  

WISHBONE bus architecture was chosen for the implementation of the NISC coprocessor interface 

mainly because of its flexibility and the fact it imposes no licensing and application restrictions. 

WISHBONE specification is currently maintained by OpenCores.org and today it represents a de facto 

standard for open-source hardware. It is also offers CAD tool support and a large library of free 

processors and other IP cores. Besides free processor IP, many popular commercial soft processors (e.g. 

Xilinx MicroBlaze and Altera Nios) have a WISHBONE-compatible variant available. 

3 NISC WISHBONE Interface 

In this section we introduce our approach to enabling the use of the NISC processor in a WISHBONE-

based system. To make the connection of the NISC processor to the WISHBONE bus possible, we 

designed and implemented a NISC WISHBONE Interface IP. This IP enables the connection of the NISC 

processor to the WISHBONE bus, but for the NISC processor to be used as a coprocessor which performs 

useful tasks in the system, some changes in the NISC processor’s architecture are required. We describe 

these architectural additions together with the software necessary to enable the communication from 

both the side of the NISC processor and the side of the main processor. We also propose an appropriate 

communication scheme, designed to ease the migration of application’s functions between hardware 

and software and thus ease the process of design space exploration. The NISC WISHBONE Interface is 

compatible with the existing NISC design flow and requires no changes in the NISC Toolset.  

The NISC WISHBONE Interface IP and the software communication scheme enable control and data 

transfer which are necessary for the use of the NISC processor as a coprocessor in WISBONE-based 

systems. The main processor can transfer the data to be processed (the function’s arguments) to the 

coprocessor, start the execution of the coprocessor function, detect when the data processing is 

completed (either by pooling the coprocessor’s status or by means of an interrupt) and retrieve the 

results.  

The designed NISC WISHBONE Interface is targeted at fully synchronous WISHBONE systems and 

supports word size (32-bit), word granularity SINGLE READ/WRITE WISHBONE classic bus cycles. We 

describe two different methods for exchanging the data between the general-purpose processor and 

the NISC coprocessor. One method is suitable for simple general-purpose data transfer and the other for 

custom special-purpose data transfers tailored for a specific application.  A design approach with two 

distinct parts of the WISHBONE interface was followed to enable this kind of flexibility. The first part is 

NISC Basic WISHBONE Interface which is responsible for control functions and special-purpose data 

transfers. The other part of the interface is the NISC Data Memory WISHBONE Interface and this one is 

responsible for general purpose data transfers, i.e. transferring large amounts of data directly to and 

from the data memory of the NISC processor.  
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3.1 NISC Basic WISHBONE Interface 

The NISC Basic WISHBONE Interface enables coprocessor control control, i.e. starting or stopping data 

processing and detecting when the data processing is completed, and transferring smaller amounts of 

special purpose data directly into the NISC processor’s datapath. This is the main part of the NISC 

WISHBONE Interface and it is necessary for the communication since it enables coprocessor control and 

interrupt capabilities.  It is designed for seamless integration with the RTL model generated by the NISC 

Toolset.  

The advantage of using the NISC Basic WISHBONE Interface for data transfers is fast communication 

(one-cycle transfers) and the ability to bring the data directly to the input of the desired functional unit, 

in this way speeding up the execution of the algorithm. The disadvantage of this part of the interface is 

that it is only suitable for transferring small amounts of data, since this approach doesn’t scale well 

beyond a few arguments and results.  

3.1.1 NISC-side communication requirements  

The accessible external signals of the NISC processor’s RTL model are the clock signal, the reset signal, 

the halt signal and the configurable I/O ports. The NISC Basic WISHBONE Interface uses only these 

external signals to connect the NISC processor to the WISHBONE bus. Data transfer from the main 

processor to the NISC processor is achieved using input ports which can be read by the NISC’s 

application using the prebinding mechanism. Starting the NISC’s application execution is accomplished 

by resetting the NISC processor, i.e. by generating a falling edge on the reset pin. Completion detection 

is achieved by reading the halt signal which NISC automatically sets upon completing its task. The results 

are retrieved using output ports, also using the prebinding mechanism. After the NISC coprocessors 

completes, it writes the results to its output ports’ registers to be read by the main processor using the 

WISHBONE interface. The output ports have an internal register inside the NISC processor’s datapath, 

but because the input ports function only as proxies for external registers, it was necessary to provide 

additional registers as a part of the WISHBONE interface. These input and output registers represent the 

shared resources that enable the transfer of data between the main processor and the NISC coprocessor. 

The designer’s task is to add the external I/O ports to the desired datapath units as a part of the process 

of designing the architecture using the GNR ADL. A simple architecture with two input ports for the 

arguments and one output port for the result shown on Figure 1. This method of communication is 

convenient when the application requires intensive calculations with some of the arguments or when 

only simple argument exchange is required. In this case arguments can be brought directly to the input 

of the desired functional unit and selected when needed, using input multiplexers. This eliminates the 

need for the sequential transfer of the arguments to the register file for later use and thus eliminates 

unnecessary transfer of the data. One sequential transfer is already done when the main processor 

transfers the data to the interface’s registers, so another transfer from the interface’s registers to the 

NISC processor’s register file or internal registers would double the communication expenses and thus 

limit the efficiency of the coprocessor. This approach also avoids register spilling for often-used values, 

which is especially important in area-limited systems with small register files. Output registers for the 
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results are used in a similar manner and can also be connected to the datapath in such a way to 

minimize communication expenses.  

 

Figure 1: Simple architecture with argument inputs and a result output 

Datapath connections for external inputs and external outputs enable NISC’s hardware to access shared 

registers for communication, while the NISC Basic WISHBONE Interface enables the same access for the 

main processor. To enable the NISC’s application to actually read these shared resources or write them, 

appropriate prebound functions for reading or writing shared registers are used. Listing 1 illustrates this 

concept for a simple application with two arguments and one result. First, the arguments are read from 

the external input ports into temporary variables and then they are used in a function to compute the 

result. The result is then written to the external output register to be read by the main processor when 

the application terminates and the halt signal is asserted.  

 

Listing 1: Sample NISC application 

void NiscMain(){ 
   //... 
 
   a = ExternalInput1_read();  //get the first argument 
   b = ExternalInput2_read();  //get the second argument 
 
   //... 
 
   c = do_stuff(a,b);          //calculate the result 
 
   //... 
 
   ExternalOutputReg_write(c); //return the result 
    
} 
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3.1.2 NISC Basic WISHBONE Interface implementation 

To enable the transfer of the data and control flow, the NISC Basic WISHBONE Interface’s provides 

registers for input arguments and special control registers. Control registers are used to set the state of 

the NISC processor’s reset signal and to read the state of the halt signal. The result output ports are 

simply routed to the interface’s output multiplexer to enable the main processor to read the results. A 

simplified block schematic of the interface is shown in Figure 2. The figure shows the internal registers 

of the interface and the simplified circuitry to illustrate the path of data to and from the NISC 

processor’s top module NiscSystem. 

 

Figure 2: NISC Basic WISHBONE Interface 

In a typical WISHBONE system, the most significant bytes of the address are decoded in the interconnect 

module (the so called WISHBONE Intercon), which enables the desired peripheral using the active cycle 

(CYC_I) and strobe (STB_I) signals, and only the required number of address bits is forwarded to the 

peripheral’s ADDR_I inputs. The internal address decoding of the peripheral then determines which of 

its internal memory locations is addressed, and this is also the way the NISC Basic WISHBONE Interface 

operates. Reading the data from the interface is implemented using a multiplexer which is controlled by 

the WISHBONE address lines. The write operation is implemented using register enable signals 

controlled by the address decode logic and the write enable qualifier signal (WE_I). The WISHBONE clock 

signal CLK_I is routed to the NISC processor and the interface to create a fully synchronous system. The 

WISHBONE handshake mechanism is implemented using only combinatorial logic, as there are no slow 

modules in the design. I.e. none of the modules requires more than one cycle for read or write 

operations so no memory elements for delay are required. WISHBONE reset signal RST_I resets the NISC 

processor and the interface’s internal registers.   
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Interrupt mechanism is implemented in such way that setting the interrupt signal INT_O only occurs 

when the interrupt enable (INT_EN) flag is set and the halt signal is set. INT_O is not a standard 

WISHBONE signal, but it can easily be connected directly to the main processor and several commercial 

tools (e.g. Altium Designer) even provide interrupt connections as a part of the WISHBONE interconnect 

module.  

3.1.3 NISC Basic WISHBONE Interface programming model 

Using the NISC coprocessor attached to the WISHBONE bus in this way is very straightforward. First, the 

value ‘1’ is written to the reset register to put the NISC processor in reset state and to insure that only 

the main processor has access to the shared registers. Then, the arguments are written to appropriate 

registers and the value ‘0’ is written to the reset register to start the NISC’s application execution. After 

that, the main processor can pool the value of the halt signal until it becomes active and then retrieve 

the results by reading appropriate registers. The reset register and the halt signal are mapped to the 

same memory location (location 0), and one is accessed when writing and the other when reading that 

memory address.  

The interface’s full memory map is shown on Table 1. The first memory location, at address 0 (plus the 

base address displacement) is reserved for the already mentioned reset/halt pair, the control register. 

Because 32-bit addressing is used, the address difference between two adjacent memory locations is 4 

bytes. So, the next location’s address is 4 and this is the location of the interrupt enable register. After 

that follow the argument and result registers. The example register address layout shown in Table 1 

enables simple implementations of traditional C functions with arbitrary number of arguments and one 

return value. Of course, for different applications with additional result values and matching result 

registers, different address layouts are possible with differently laid-out interface datapath and NISC I/O 

ports.  

Table 1: NISC Basic WISHBONE Interface memory map 

 

 

 

 

 

 

 

 

Address Name Width [bit] Description 

00 RESET 
HALT 
!(INT_FLAG) 

 

1 

 

Bit0: 
   read: status of the halt signal is read 
   write: reset register is written to – '1' sets the NISC   
             to reset state, '0' initializes the execution   
            ('0' also serves as the interrupt acknowledge) 
                 

04 INT_EN 1 Bit0:  reads/writes the interrupt enable flag – '1'  
          enables the interrupts, '0' disables them 

08 RESULT 32 Read/Write – result 

12 ARG 1 32 Read/Write – 1st argument 
16 ARG 2 32 Read/Write – 2nd argument 
... ... ... ... 

(N+2)*4 ARG N 32 Read/Write – Nth argument 
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Listing 2 shows an example C function offloaded to the NISC coprocessor to illustrate the designed 

communication scheme. The function call is inlined to eliminate the need for copying the arguments to 

local variables. This example function is blocking, i.e. it doesn’t return until the coprocessor’s task is 

completed and in that way the coprocessor’s task behaves as a regular C function. Because of that, the 

programmer can use it from the calling function as though it is a software, rather than hardware, 

implementation of the algorithm. When using this communication scheme, only the body of the 

function needs to be replaced and the calling functions remain unchanged when migrating the desired 

function’s implementation between hardware and software. In this way, it is very simple to 

experimentally evaluate design options and thus explore the design space.  

For exploiting the task-level, data and function parallelism, more complex non-blocking versions of NISC 

coprocessor function calls should be used. In this way, the main processor can send the data to the NISC 

coprocessor, initialize the data processing and carry on with its own tasks. These tasks could include 

control functions, processing a part of the data (data parallelism), or performing a part of the processing 

on all the data (function parallelism).  

 

Listing 2: Communication with the NISC processor 

// NISC declarations 
volatile uint32_t * nisc_ctrl   = (uint32_t *)  Base_NISC; 
volatile uint32_t * nisc_ie     = (uint32_t *) (Base_NISC + 4); 
volatile uint32_t * nisc_result = (uint32_t *) (Base_NISC + 8); 
volatile uint32_t * nisc_arg1   = (uint32_t *) (Base_NISC + 12); 
volatile uint32_t * nisc_arg2   = (uint32_t *) (Base_NISC + 16); 

 
//hide the pointers behind #define  
#define NISC_CTRL      ( *nisc_ctrl ) 
#define NISC_HALT      ( *nisc_ctrl )    //alias for NISC_CTRL 
#define NISC_IE        ( *nisc_ie ) 
#define NISC_RESULT    ( *nisc_result ) 
#define NISC_ARG1      ( *nisc_arg1 ) 
#define NISC_ARG2      ( *nisc_arg2 ) 

 
//constants 
#define NISC_STOP      1 
#define NISC_GO        0 

 
//NISC function (blocking) 
inline uint32_t nisc_function(uint32_t arg1, uint32_t arg2){ 
 
       NISC_CTRL = NISC_STOP; //stop the NISC 
       NISC_ARG1 = arg1;      //write arg1 
       NISC_ARG2 = arg2;      //write arg2 
       NISC_CTRL = NISC_GO;   //start the NISC 
 
       while(!NISC_HALT);     //wait until NISC completes 
 
       return NISC_RESULT;    //return the result 

} 
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Interrupt-driven communication with the NISC coprocessor requires enabling the interrupts using the 

interrupt enable flag.  When the arguments are sent to the coprocessor registers and the execution is 

started, the main processor can carry on with its regular tasks and retrieve the results in the interrupt 

service routine (ISR). As a part of the ISR, the main processor must also acknowledge the interrupt by 

clearing the NISC WISHBONE Interface’s interrupt flag which is achieved by writing the value ‘0’ to the 

NISC control register. Other standard interrupt acknowledge procedures must be followed depending on 

the processor’s interrupt system architecture and whether the interrupts are level or edge triggered. 

The next batch of data to be processed can be sent in the ISR and the next execution can also be 

initiated.  

3.2 NISC Data Memory WISHBONE Interface 

The NISC Basic WISHBONE Interface was designed for applications which need to exchange a small 

amount of special purpose data with the main processor. The problem is that this approach doesn’t 

scale well for applications that have a large amount of arguments and/or results. This approach would 

then require a large number of registers and large multiplexers, which would require a lot of chip area 

and would also limit the maximum frequency, especially when considering the negative implications of 

using large multiplexers in FPGAs.  

A further drawback of the NISC Basic WISHBONE Interface is the inability to perform indexed addressing 

on the arguments and results without the need for data transfer between shared registers and the data 

memory. E.g. to perform indexed addressing on the arguments, NISC processor must copy the data from 

the interface’s argument registers to internal arrays in the data memory and every piece of data thus 

has to be copied twice which imposes a large communication overhead when transferring large amounts 

of data. This especially represents an issue with algorithms that involve matrix calculations and the like.  

3.2.1 NISC Data Memory Access Multiplexer/Arbiter 

A simple solution for the problem of transferring large amounts of data to and from the NISC processor 

is the direct transfer of data to and from the NISC processor’s data memory. To achieve this, a special 

module that enables external access to NISC’s data memory was added to the design. The role of this 

data memory access multiplexer is to provide access to the NISC processor’s data memory from the 

WISHBONE bus and to arbitrate access to the memory between the interface and the main processor. 

The data memory multiplexer is connected between the NISC processor’s core (controller and datapath) 

and the data memory and it provides an additional set of pins that are connected outside of the NISC 

processor itself, as shown in Figure 3. 
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Figure 3: Multiplexing the access to the data memory 

The data memory multiplexer’s arbitration scheme is quite simple: if the NISC processor’s reset or halt 

signals are active, then the main processor has control over the data memory. Otherwise, the control is 

left to the NISC processor and the main processor has no means of writing to the data memory and 

reads the value of all data bits as zeroes. The implementation of the data memory multiplexer is shown 

in Figure 4.  

 

Figure 4: Data memory multiplexer implementation 

OR 

GND 

N
IS

C
 

E
X

T
E

R
N

A
L

 

DATA_OUT 

DATA_IN 

ADDR+CTRL 

M
em

o
ry 

DATA_IN 

DATA_OUT 

ADDR+CTRL 

RESET 

 HALT 

DATA_OUT 

ADDR+CTRL 

DATA_IN 
MUX MUX 

MUX 

dmem mux 

App 

Controller 

Datapath 

cmem 

dmem 

clk 
reset 
halt 

ExternalInputs 
ExternalOutputs 

d
m

em
 m

u
x 

dmem external 
access 



12 

 

3.2.2 NISC Data Memory WISHBONE Interface implementation 

NISC Data Memory Access Multiplexer/Arbiter provides the means for external access to the data 

memory of the NISC processor and the NISC Data Memory WISHBONE Interface is connected to these 

external access pins. Its role is to handle the appropriate data conversion and handshaking to enable 

correct data memory access operations from the WISHBONE bus. NISC’s data memory module 

encompasses FPGA block RAM’s (BRAMs) and a memory controller module (namely, 

ByteAddressableDMemLogic Verilog module). The data memory module’s ports are actually the 

memory controller’s ports so the NISC Data Memory WISHBONE Interface is designed in such a way to 

operate with the memory controller and internal BRAMs.  

Figure 5 shows the internal organization of the NISC Data Memory WISHBONE Interface. The address 

bits are forwarded directly from the WISHBONE address lines to data memory’s address lines. Since 

NISC’s memory controller doesn’t require word access addresses aligned on 4 byte borders and requires 

the data with width less than 32-bits to be aligned to the lower data bits (unlike WISHBONE mechanism 

with byte-enables), special alignment logic was designed to handle the translation. Also, depending on 

the access type, WISHBONE byte enable lines are translated to appropriate type codes for the NISC 

memory controller. Write and read enable signals are derived from the WISHBONE write enable qualifier 

WE_I. The handshaking mechanism is implemented with 1 cycle acknowledge delay to allow for the 

BRAM latency, since FPGA BRAMs are synchronous.  

 

Figure 5: NISC Data Memory WISHBONE Interface 

3.3 The complete NISC WISHBONE Interface and its programming model 

The complete NISC WISHBONE Interface, as shown of Figure 6, consists of the NISC Basic WISHBONE 
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complete interface is to first put the NISC processor in the reset state using the NISC Basic WISHBONE 

Interface and then send the data through the NISC Data Memory WISHBONE Interface. After that, NISC 

is taken out of reset state and the main processor waits for the application to complete and retrieves 

the results from the data memory. Special-purpose data could be also sent or retrieved using the NISC 

Basic WISHBONE Interface. It’s also important to point out that the lack of hardware or software reset of 

NISC’s data memory is vital for this sort of communication because the sent arguments would otherwise 

be lost when the NISC processor is reset.   

To enable the main processor to read or write a particular bit of data in the NISC’s data memory, its 

address must be known and it is used as an offset from the base address of the NISC Data Memory 

WISHBONE Interface in the main processor’s memory map. NISC Toolset’s Storage Bindings outputs are 

used to determine the address of a particular global variable or a global array in the data memory. 

Storage Bindings provide this information in the form of a table and the required information can be 

found in this table and used in the program code. The whole data memory of the NISC processor is 

mapped to a contiguous external memory block in the main processor’s address space and is thus easily 

accessible through pointer manipulation. After the main processor writes the arguments to the global 

data structures in the NISC processor’s data memory, the NISC processor operates on this data. The NISC 

processor then writes the results to designated global data structures which are afterwards read by the 

main processor. This approach requires no changes in the NISC’s algorithm, provided that it uses global 

variables or global arrays. Global structures can also be passed to the functions as arguments, which 

eliminates the need for any changes in the code of any of the functions. 

 

Figure 6: NISC WISHBONE Interface architecture 
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Listing 3 shows an example implementation of the communication using the NISC Data Memory 

WISHBONE Interface. After asserting NISC’s reset signal to ensure access to the data memory, 

arguments are copied to the data memory using pointers and the data processing is started by 

deasserting the NISC reset signal. After completion detection, using pooling in this example, results can 

be retrieved for further processing. If there is no need to immediately start processing the next batch of 

data, the data can be used directly from NISC’s data memory, thus eliminating the need for copying. If, 

however, we want to utilize task-level parallelism and process another batch of data in parallel with the 

task of the general-purpose processor, copying becomes necessary.  

 

Listing 3: Communication using the NISC Data Memory WISHBONE Interface 

3.4 TSK3000A WISHBONE System with a NISC coprocessor 

The complete NISC WISHBONE Interface was implemented using VHDL and integrated with a generated 

NISC processor in a self-sufficient WISHBONE compatible module which can be used as a coprocessor in 

systems based on the WISHBONE bus architecture. The generated NISC processor was based on a 

generic NISC architecture with necessary I/O datapath extensions and simple applications designed to 

test the communication capabilities. As a proof-of-concept for the presented coprocessor-based 

approach, we implemented and tested a WISHBONE system based on Altium’s TSK3000A general-

purpose 32-bit RISC soft processor. TSK3000A is based on the MIPS/DLX instruction set and is FPGA 

vendor independent (unlike FPGA vendors’ proprietary processors, such as Xilinx MicroBlaze and Altera 

Nios). It is designed for seamless integration with Altium’s configurable Wishbone Interconnect module 

which was also used in this proof-of-concept system. Main processor-side communication routines were 

developed as presented earlier in this chapter and then tested in conjunction with the hardware using 

the Altium LiveDesign Evaluation Board with a Spartan3 FPGA and Xilinx ML506 with a Virtex-5 FPGA. 

The schematic for the complete system is shown in Figure 7.  

volatile uint32_t *nisc_dmem_arg = (uint32_t*) (nisc_dmem_base + arg_offset); 
volatile uint32_t *nisc_dmem_res = (uint32_t*) (nisc_dmem_base + res_offset); 
 
//NISC function (blocking) 
inline void nisc_function(uint32_t *arguments, uint32_t *results){ 

 
       NISC_CTRL = NISC_STOP; //NISC stop 
 
 //send the arguments   
       for(int i=0; i < N; i++){ 

  nisc_dmem_arg[i] = arguments[i]; 
} 
 
NISC_CTRL = NISC_GO;   //NISC start 

 
       while(!NISC_HALT);     //wait until NISC completes 
 
       //return the results 

for(int i=0; i < N; i++){ 

  results[i] = nisc_dmem_res[i]; 
} 

} 
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Figure 7: TSK3000A with a NISC coprocessor 

4 Performance analysis  

The designed NISC WISHBONE Interface provides the means for using the NISC processor as a loosely-

coupled coprocessor in WISHBONE-based systems. To justify the use of the NISC coprocessor in the 

system, the speedup of the algorithm must justify the cost of the extra hardware. Furthermore, the 

speedup of the NISC implementation of the algorithm in question must be such to cancel the negative 

effect on the performance imposed by the main processor to coprocessor communication overhead and 

still provide overall system speedup. Of course, what is actually justified also depends on the achieved 

speedup rate and design constraints. E.g. for area-constrained systems a small achieved speedup would 

not justify the use of a NISC coprocessor, but it could be justified in systems where area is not an issue 

and every bit of performance improvement counts. 

To ease the design space exploration and provide the means of estimating the system’s performance 

and the margins of the speedup required by the NISC processor in the early stages of the project, an 

analytical model of the system’s performance was devised. This model is intended to be used together 

with the profiling information and it enables the designer to estimate the benefits of using a NISC 

coprocessor for a particular part of the system’s task and quickly explore the design space before the 

actual system is built. It also predicts the minimum performance limit for the NISC processor which can 

be used to quickly eliminate unsuitable architectures and thus drive the hardware-software co-

optimization process in the right direction considering the system-level requirements.  

The NISC WISHBONE Interface was designed in such a way as to extract maximum performance in 

systems with a general-purpose processor which uses WISHBONE classic bus cycles, like the Altium 

TSK3000A. This means that an access to the interface’s register takes one clock cycle and an access to 
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the data memory takes two clock cycles (because of BRAM latency). WISHBONE classic bus cycles don’t 

allow for distinct address and data transfer phases and any sort of bus transaction pipelining to improve 

performance. Because of that, there are no means for further acceleration of the data transfer 

according to the WISHBONE classic specification, not even with additional circuitry. The number of clock 

cycles required for the communication is defined by the number of cycles required for the transfer of 

arguments, the number of cycles required for the transfer of results and the number of cycles required 

for the control operations. The control overhead consists of only two cycles, one for stopping the NISC 

processor (i.e. putting it into reset state) and one for starting it (i.e. taking it out of reset state).  

To estimate the performance impact of the communication overhead, we use the worst-case scenario 

for the transfer of the arguments and results, i.e. we use the slower mode of data transfer, the transfer 

of data to and from the data memory of the NISC processor. The communication time is defined by the 

cycle count for the communication and the frequency of the communication clock, i.e. the bus 

frequency, which is the same as the system frequency in fully synchronous systems.  

Fully synchronous systems offer the advantage of easier design process and simpler verification. The 

drawback of using a single clock in the system is the negative impact on performance. The only way to 

extract the maximum performance is to use asynchronous clock domains for different parts of the 

systems, each running at its maximum frequency and use synchronization logic and FIFOs for crossing 

the clock domains, which often leads to design problems and difficult-to-track timing issues. The fully 

synchronous approach eliminates timing problems inside of the system and it was our intent to analyze 

and determine the boundaries of this design approach when using NISC coprocessors. The major 

speedup should be achieved by the means of parallelism and architecture optimizations with cores 

sharing the same clock and asynchronous design should only be considered when this approach fails to 

meet the design constrains. 

Since the designed NISC WISHBONE Interface is 32 bits wide, the model presumes 32-bit arguments and 

results but this reasoning is, of course, valid for the arguments with widths of less than 32 bits. Transfer 

of data wider than 32 bits can be split up in 32 bit data transfers with some software support and can 

thus also be modeled. It is also important for the model to include additional software overheads for the 

communication, e.g. loop overhead. There are different approaches to accelerating this sort of 

communication, using both software and hardware. These approaches include loop unrolling, using 

custom loop instructions with zero control overhead (depending on the processor architecture and 

configurability) or using additional DMA engines to drive the data transfer. To model these additional 

parameters, a scaling factor for the number of transfers was added together with a constant that 

includes any additional control overheads (such as DMA setup) to better estimate the system’s 

performance. The basic expression for estimating the communication time is given by the equation (1).  
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To analyze the benefits of the NISC implementation of a particular function, we must compare the 

execution time of the algorithm for a general-purpose processor and the execution time when using the 

NISC processor. The execution time for the general-purpose processor is defined by the processor 

architecture and clock frequency. The processor architecture defines the number of instructions for the 

algorithm and the number of cycles required to execute an instruction (Cycles Per Instruction – CPI) and 

these define the total number of clock cycles for an algorithm. Equation (2) shows the expression for the 

execution time. 

 

CPU

CPU
CPU f

CycleCount
T =  (2)  

Similarly, the execution time for the NISC processor is defined by the number of cycles required for the 

particular application and the NISC processor’s clock frequency, as equation (3) shows. The number of 

cycles is determined by the application itself and the NISC processor’s architecture.  

 
NISC

NISC
NISC f

CycleCount
T =  (3)  

The total execution time when using the NISC processor as a coprocessor is defined by the sum of the 

execution time for the application itself and the time required for communication: 

 commNISCCOP TTT +=  (4)  

All these expressions depend on the frequency of a particular module. Since the NISC WISHBONE 

Interface is targeted at fully synchronous systems, the frequencies of all modules must be the same. 

Therefore, the maximum frequency of the system is determined by the minimum of all the core’s 

frequencies, as shown in equation (5). This expression can be easily extended to systems with multiple 

NISC coprocessors. 

 { }max,max,max, ,,min BUSNISCCPUSYS ffff =  (5)  

The execution time for the general-purpose processor can be expressed using (2) and (5), as follows: 
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Similarly, the execution time for the NISC coprocessor can be expressed using (1), (3), (4) and (5), as 

follows: 
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(7) 

To determine the borderline of the coprocessor’s effectiveness, we again turn to the worst-case 

scenario, which in this case is the blocking communication. When using blocking communication, there 

is no parallel execution of the algorithm on the main processor and the NISC coprocessor and because of 

that, this represents the worst case for the processor-coprocessor communication. For the hardware 

implementation of a function to be efficient, the obvious and necessary condition is for the function’s 

execution time on the coprocessor to be shorter than the execution time on a general-purpose 

processor: 

 CPUCOP TT <  (8) 

If the coprocessor’s implementation doesn’t limit the system’s maximum frequency (i.e. fNISC,max > fCPU,max 

holds true) then the speedup of a part of an algorithm (taking into account communication and control 

overheads) certainly speeds up the execution of the whole program. From (6), (7) and (8), follows: 

 adCtrlOverheSWOverheadsCountArgCountCycleCountCycleCount CPUNISC −+×+−< )2()Re(   (9) 

The equation (9) defines the maximum number of clock cycles for the NISC coprocessor in order for that 

implementation not to reduce the effectiveness of the whole system. Using this expression, it is possible 

to eliminate unacceptable designs in the early stages of the project. For the coprocessor implementation 

to be truly effective, it must provide suitable speedup to justify the additional hardware expense. To 

quantify this, we must analyze the overall speedup factor. To do this, the program must be divided into 

two parts. One part will always be executed on the main processor. The other part can migrate between 

hardware and software implementations and it is for this part that we evaluate the effectiveness of the 

coprocessor implementation.  

 SWHWSWPROGRAM CycleCountCycleCountCycleCount /+=  (10) 
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The speedup is defined as the ratio of execution times when using software or hardware 

implementation of the function in question. TCPU is the execution time of a purely software 

implementation and TCPU+COP is the execution time when a part of the system’s task is implemented in 

hardware, using the NISC coprocessor.  
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If the NISC coprocessor’s implementation limits the system’s maximum frequency then the speedup 

should be analyzed in this context. The NISC processor’s implementation is in this case only effective if 

the overall execution time is shorter than that of a purely software implementation despite the lower 

overall system frequency.  
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The equation (12) defines the maximum number of clock cycles for the coprocessor for it not to degrade 

the system’s performance and insure speedup, given the overall frequency of the system. If we’re 

interested in the minimum frequency for the system that would insure speedup, (12) can be rewritten 

as follows: 
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The system’s speedup in the case when the NISC coprocessor limits the system’s maximum frequency is 

as follows: 
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Similar reasoning applies to the case then the bus interconnect module limits the maximum frequency, 

e.g. due to its complexity increasing when introducing the NISC coprocessor in the system.  

5 Conclusion  

In this paper we presented our solution for using the No-Instruction-Set Computer (NISC) as an 

application-specific coprocessor in systems based on the WISHBONE open bus specification. This 

approach allows designers to easily use the NISC technology in existing systems with large amounts of 

unportable legacy code. We defined and explained the hardware and software extensions necessary for 

the integration of the NISC coprocessor in an arbitrary WISHBONE system. The flexibility of these 

extensions enables different ways of using the NISC coprocessor to accelerate the system’s application. 

As a result, we enabled quick and easy integration of a hardware accelerator generated using the NISC 

Toolset into a given system to improve overall performance. With the previously designed interface and 

memory multiplexer hardware, the manual interface parameterization and integration process can’t 

take more than an hour. This process is also a good candidate for automation using a simple software 

tool which can further simplify and speed-up the whole design process.  

We also analyzed the performance implications of using such a coprocessor in a fully synchronous 

WISHBONE system. The effectiveness of using the NISC coprocessor and the borderline performance 

values required to achieve overall system speed-up were evaluated. We proposed an analytical 

performance model that could help quick exploration of the design space, elimination of unacceptable 

designs and setting the design targets even in early stages of the project. In this way, the hardware-

software co-development and co-optimization process could converge more quickly towards the desired 

goal. Since the model requires only simple arithmetic calculations, it can easily be used to build a tool to 

help automate design space exploration.  
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