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MOTIVATION

o Face alignment techniques often rely on eye localization

o Accurate eye localization is crucial for recognition
performance

o Many existing recognition techniques are highly
susceptible to alignment (registration) errors I




saa LUKS

ory of artific lp cepti
ytrrls nd cybernetic

MOTIVATION

o Several ongoing project require an eye-localization procedure

o Common requirements:

Fast training phase, 3 BAMBI pm,.
Efficiency, S T
Robustness,
Computational simplicity, (JrI\tD

KC Class

Real-time capabilities.

o An appropriate solution: correlation filters

o Some options:
» MACE (Mahalanobis et al., 1987)
» OTF (Refregier, 1991)

» UMACE (Savvides et al., 2003)
» ASEF (Bolme et al., 2009)
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REVIEW OF ASEF FILTERS

Average of Synthetic Exact Filters (ASEFs)!

Given a training image f (x, y) and a desired correlation
output g(x,y) of the following form:

(x=x)° +(y=v)°

glx,y)=e o2

we define a SEF computed in the frequency domain as:
G(w,v) G(w,v) © F'(w,V)
Flw,v) F(w,v)Q® F*(w,Vv)

H (w,v) =
Justification:

glx,y) = (f®N)(x,y) = F~1(F(w,v)H(w,Vv))

Bolme, D.S, Draper, B.A., Beveridge, J.R.: Average of synthetic exact filters. In: Proc. Of CVPR’09, pp. 2105-2112 (2009).
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REVIEW OF ASEF FILTERS

o A visual example

o SEF construction:
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REVIEW OF ASEF FILTERS

o ASEF construction
» Compute SEFs for all n training images f;(x,y),i = 1,2,.., n
* Average SEFs to improve generalization:

1% ,
hCy) =2 ) k@Y hiy) = £ (Hiw,v)

* Avisual example
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GENERALIZATION OF ASEF FILTERS - PSEF

ASEF filters rely only on the sample mean of the SEFs to
characterize the SEFs distribution

If we assume that the SEFs are drawn from a uni-modal
multivariate Gaussian distribution, we can also compute
the maximum variance (or principal) directions of the
SEFs distribution using:

Xp; = Aipi, 1 =1,2,..., min(d,n)

We define the eigen-vectors p; of the above equation as
PSEF filters

The procedure resembles PCA (difference in X)
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GENERALIZATION OF ASEF FILTERS - PSEF

O Properties of PSEF filters
o First PSEF filter equals ASEF filter

* Remaining filters carry additional information about the
distribution of the SEFs

* Filters exhibit sign ambiguity that needs to be resolved

o Visual examples of first five filters-multiplied by 1 and -
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PSEF FILTERS FOR LOCALIZATION

Using PSEF filters for localization requires a fusion
scheme (we have several filters at our disposal)

Viable option: evaluate weighted sum of correlation
outputs

Fast option: exploit linearity

k k
9e(6y) = ) wigiey) = ) wi((pi®) (7)) =
i=1 =1

k
D wipi(xy) |®F(6,y) = pe(x, 1)®f (x,7)
i=1
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INCORPORATING CONSTRAINTS

O To boost the localization performance we incorporate
two types of constraints into our procedure

o Soft constraint

» Gaussian shaped weighting function that is multiplied with
the correlation output

» Acts as sort of prior model (estimated on some training data)

O Hard constraint

» Look for right eye in the upper right corner and for left eye in
the upper left corner
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EXPERIMENTS

o Training database:
» Part of the LFW database (640 images)

* Augmented through affine transformations to 25600 images

o up to 5 pixels shift in each direction, rotation up to +15°, scaling by a
factor of at most 1.0 £0.15, mirroring around the y axes

* Images size equals 128x128 pixels
» All facial regions are extracted using the VJ face detector

* 4o modifications per image
(robustness, data requirements)

* Retinex preprocessed for

illumination invariance ‘
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EXPERIMENTS

o Test database:
» 3815 images from the FERET database

* Augmented through affine transformations to 45780 images

o up to 5 pixels shift in each direction, rotation up to £15°, scaling by
a factor of at most 1.0 £0.15, mirroring around the y axes

o 12 modifications per image
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o Localization criterion (Interoccular distance criterion)

_ max (| Le=7ellllbre=rel)
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o Examples
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o We plot the plot the proportion of images, on which we
achieved d ., against the value of d,,,
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EXPERIMENTS

o Sign ambiguity

* Results (we choose d,,,=0.25 for alleviating the sign
ambiguity)
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EXPERIMENTS

o Comparison of PSEF, ASEF and Haar
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Localization rate
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Unconstrained search space

Constrained search space

Criterion Left eye Both eyes Left eye Both eyes
Haar ASEF PSEF |Haar ASEF PSEF | Haar ASEF PSEF |Haar ASEF PSEF
0.05 ||50.5 56.9 70.5(256 350 53.0|675 656 743 50.6 46.1 58.2
0.10 |/ 69.8 79.2 89.5/447 66.1 83.0/924 946 959883 914 933
015 || 711 80.5 90.7(47.2 67.8 847|946 965 976913 944 0958
020 || 725 812 91.2/475 68.6 855950 97.8 985917 965 97.5
0.25 | 727 815 915/47.7 691 86.0(95.0 98.7 99.1/91.8 98.1 98.6

0.25
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EXPERIMENTS

o Time needed (Intel i7-2600 CPU @ 3.40 GHz, OpenCV, FFTW)

Face part Without hard constraint With hard constraint
Haar ASEF, PSEF

Haar ASEF, PSEF
Left eye 21.6 ms 0.65 ms 11.5ms 0.66 ms
Right eye 24.8 ms 0.35ms 13.6 ms 0.35ms
Both eyes 46.4 ms 1.00 ms 25.1 ms 1.01 ms

O Training time
» Haar — days (often weeks)
» PSEF (hours)
* ASEF (minutes)
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CONCLUSION

We have presented a new class of correlation filters and
applied them for the task of eye localization

The filters exhibit some desirable properties

Fast training (hours) — ASEFs (minutes), Haar (days), which is
important for optimization purposes

Robust performance — unlike window-based classifiers,
correlation filters consider the entire image (holistic
appraoch) — partial robustness to occlusions

Rapid localization — requires only one forward and one
inverse Fourier transform, one element-wise multiplication,
and maximum detection
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CONCLUSION

o Directions for future work

» Adaptive mixtures of PSEFs - AMPS (for multi-modal SEF
distributions, e.g., pose-specific correlation filters)
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CONCLUSION
o Directions for future work
» Adaptive mixtures of PSEFs - AMPS (for multi-modal SEF
distributions, e.g., pose-specific correlation filters)
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ADDITIONAL SLIDES

o Comparison between ASEF and combined PSEF filter
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O Localization performance for one (left) eye

Localization rat

o o o
w B O
: T

w— PSEF
s ASEF

== Haar classifier

0 0.05 0.1 0.15 0.2
Interoccular distance criterion

0.25

1 : S
0.9
0.8
o 0.7
-
S
c 0.6
O
S 0.5f
N
8 0.4
o]
— 0.3
0.2 -
=== Haar classifier
0.1 w— PSEF
e ASEF
O 1 1 1 T
0 0.05 0.1 0.15 0.2 0.25

Interoccular distance criterion




