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• Underwater surface reconstruction

• Visual quality control based on computer vision

• Robot localization based on planar surfaces detected by 3D camera

• 2.5D mesh segmentation to approximately convex surfaces

• PDE image compression

• Video quality evaluation
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• Video quality evaluation
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Underwater Surface

Ivan Aleksi, dipl.ing.
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Prof. Dr. Sc. Željko Hocenski
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Underwater Surface
Reconstruction
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2D/3D Underwater Object Reconstruction

• Example of underwater inspection mission.
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• Find appropriate time (range) sample in each 1D beam that corresponds to the first 
significant signal change denoting that an object is present.

Range-finding in 1D beams

B
e
a
m
s

5

Range

B
e
a
m
s

Range

Underwater Surface Reconstruction



Reconstructed 3D Object Visualization

• 3D visualization with Point Cloud Library (PCL).

• On the dry end (monitor) user can view reco-nstructed 3D object as a 6D Point Cloud.

• Point Cloud = [3D location, color, range, intensity]
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2D plane pointcloud projection (2D image)

• 2D  image of reconstructed pointcloud.
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Visual Quality Control Based on Visual Quality Control Based on 
Computer VisionComputer Vision
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Computer VisionComputer Vision

Applied on

Ceramic Tiles Visual Quality Inspection and 
Classification
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VISUAL INSPECTIONVISUAL INSPECTION
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Concept and Goals…

• Replace man as visual controller with an automated system.

• Improve visual perception rate and rise detection accuracy.

• Rise system durability and availability.

• Lower production costs;

– Lower ratio of falsely detected defects.

– Rise classification accuracy.
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System structure and relations

• Structure section are

– Object image capturing – utilize digital line scan camera or cameras

– Image data crunching – utilize appropriate set of algorithms for tile fault 
detection, localization and quantization.
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Types of Defects… what to search for?

• There are two types of defects:
– Geometry related defects – type of 

defects tightly related to geometry 
properties of tile, such:  width, heigth, 
edge linearity, surface planarity and 
warping ratio

– Surface related defects –
• Morphological defects – planar 
type of defects, such: spotted dots, 
blobs, textural inconsistence, 
tonality, other morph featured 
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blobs, textural inconsistence, 
tonality, other morph featured 
defects. 

• Geometrical surface defects -
defects that are significantly 
noticeable and have measurable 
3D components, such: spotted 
dots, lumps, bumps, 3D texture 
morph defects.
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Quality Estimation…rules, is there any?

• Quality estimation bases on:

– Presence and amount of geometry 
related and surface related defects

– Subjective opinion of visual 

analyzer

• After all… Classification rules are 
very stretchable!

• Solution -> Neural Network 
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classclass

GeometryGeometry
analysisanalysis

ObjectObject image image afterafter
preprocessingpreprocessing

SurfaceSurface
analysisanalysis
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• Solution -> Neural Network 
Classificator. 2nd2nd
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Industrial plant prototypeIndustrial plant prototype
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Robot Localization Based on Planar Surfaces 
Detected by 3D Camera

view B

view ARobert Cupec, 

Emmanuel Karlo Nyarko,

Damir Filko

Ivan Petrović (FER, Zagreb)

Fast Pose Tracking Based on Ranked 3D Planar 

Patch Correspondences,
10th IFAC Symposium on Robot Control 
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Task

• given sensor data acquired by 
a 3D camera from 2 different 
views, determine the relative 
pose of these two views

10th IFAC Symposium on Robot Control 
(SYROCO), Dubrovnik, Croatia, 2012
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Concept

extraction of 3D 
planar patches
extraction of 3D 
planar patches

matching of 3D planar 
patches accross 

views

matching of 3D planar 
patches accross 

views
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generating pose
hypotheses

generating pose
hypotheses

selecting the best 
hypothesis

selecting the best 
hypothesis
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Extraction of Planar Patches from 3D Point Cloud

• Microsoft Kinect 3D camera → 3D point cloud
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RGB image depth image
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Extraction of Planar Patches from 3D Point Cloud

• iterative Delaunay triangulation + merging of triangles [Schmitt, Chen (1991)] →
set of 3D planar surface patches
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segmented depth image 3D model consisting of planar patches
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Matching of Planar Patches

• Problem – no descriptors like in the case of point-features

• large number of combinations

• large number of hypotheses

• high computational reqirements
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• Generate pose hypotheses by building a tree structure

3 4

Tree structure:
• Node – pair of matched surfaces from Q
• Path from a leaf node to the root node – pose hypothesis
• Node is assigned the pose obtaned by EKF update of the pose 
assigned to the parent node.
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• Generate pose hypotheses by building a tree structure

3 4

More probable hypotheses are generated before the less 
probable ones.
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Experimental Evaluation
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• the estimated relative pose is compared to the pose obtained by odometry
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160 × 120 320 × 240

surface detection time (s) surface detection time (s)
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image registration time (s)
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Pathak et 
al. (2010)

Proposed
method

Image resolution 176×144 160×120

No. of samples 5 108

Mean surface detect. time (ms) 430 24.88

• Comparison with the method presented in Pathak et al. (2010)
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Mean registration time (ms) 159.8* 6.30

*Mean image registration time is calculated for the situation where 50% of the
total number of planar surfaces obtained was used in image registration.

Robot Localization Based on Planar Surfaces Detected by 3D Camera



SACS – Segmentation to Approximately Convex 
Surfaces

1. Create a 2.5D mesh of the range image
using iterative Delaunay triangulation
[Schmitt & Chen, 1991].

2. Starting from the largest triangle,
perform region growing by successively

RGB image Depth image

R. Cupec, E. K. Nyarko, D. Filko
D. Fast 2.5D Mesh Segmentation to Approximately Convex Surfaces, Proceedings of the 5th European Conference on
Mobile Robots , Örebro, Švedska, 2011. str. 127-132.
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appending adjacent triangles as long as
the obtained triangle set represents an
approximately convex surface.

3. Remove all triangles belonging to the
obtained segment from the further
processing.

4. Repeat from step 2 until all triangles
are considered.
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Experimantal Evaluation

Camera image Manually created 
ground truth
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PCL Our method

Fast 2.5D Mesh Segmentation to Approximately Convex Surfaces



� We evaluated developed segmentation by using V-measure [Rosenberg &
Hirschberg, 2007] across 12 scenes and comparing our method to the segmentation
obtained by implemented tools from Point Cloud Library (PCL).
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� Execution time of the proposed method (SACS) and PCL in seconds.

Exec. 

time

SACS

PCLmesh 

building
segment. total

min. 0.119 0.036 0.155 1.293
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min. 0.119 0.036 0.155 1.293

max. 0.176 0.128 0.278 2.492

average 0.146 0.066 0.212 1.626

Fast 2.5D Mesh Segmentation to Approximately Convex Surfaces



PDE IMAGE COMPRESSION
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Irena Galić
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Introduction

PDEs for Image Compression:

• diffusion-like partial differential equations (PDEs) for image 
compression

• driving inpainting to the extreme

• keep only a small fraction of the pixels 
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• encode the selected data in an efficient way

• reconstruct the remaining data with PDE-based interpolation

PDE Image Compression



PDE Compression
� Coding:

• adaptive triangulation that can be coded in a binary tree BTTC (Distasi 
et al. 1997)
• split area along one diagonal into two triangles
• if plane on a each triangle approximates image not well enough:
subdivide the triangle

1
1

1
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• adaptive error threshold
• EED in the encoding step
• brightness rescaling
• specific quantisation strategy 
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PDE Compression
� Decoding:

• sparse image is recovered from the binary tree representation

• reconstructing missing data by Edge-enhancing diffusion
(EED)(Weickert 1996)

Lu=div(g(∇u
σ
∇u

σ
T) ∇u).
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sparse image reconstructed image

PDE Image Compression
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Comparison of compression methods
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Comparison of compression methods

37PDE Image Compression



References

• I. Galić, B. Zovko-Cihlar, S. Rimac-Drlje: Computer image quality selection
between JPEG, JPEG 2000 and PDE compression. Proc. 19th International
Conference on Systems, Signals and Image Processing (IWSSIP), Wien,
Austria, IEEE Austria Section, 2012. 451-455

• Č. Livada, I. Galić, B. Zovko-Cihlar: EEDC Image Compression Using
Burrows-Wheeler Data Modeling. Proc. 54th International Symposium
ELMAR- 2012, Zagreb, ITG, 2012.

38

• I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, H.-P. Seidel: Image
compression with anisotropic diffusion. Journal of Mathematical Imaging
and Vision, Vol. 31, 255–269, 2008.
(adaptive triangulations with EED-based interpolation)

• I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, H.-P. Seidel: Towards
PDE-based image compression. Variational, Geometric, and Level Set
Methods in Computer Vision. Lecture Notes in Computer Science Vol. 3752,
Berlin, Springer, 37-48, 2005.

PDE Image Compression



Video Quality Group at Faculty of Electrical 
Engineering in Osijek (VQG@ETFOS)

• VQG@ETFOS

– Prof. dr.sc. Snježana Rimac-Drlje, dipl. ing.

– Dr.sc. Mario Vranješ, dipl.ing.

– Denis Vranješ, mag.ing. 

• Research areas
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– Image & Video Processing

• Image and Video Coding

• Transmission over Heterogeneous Networks

– Human Vision Modelling

– Video Quality Evaluation

• Objective Video Quality Evalutaion

• Subjective Video Quality Evaluation
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• Creation of Subjective Video Quality Databases [1], [2]

– ETFOS CIF Video Quality (ECVQ) Database (resolution 352 x 288)
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• Creation of Subjective Video Quality Databases [1], [2]

– ETFOS VGA Video Quality (EVVQ) Database (resolution 640 x 480)
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• Design of Objective Video Quality Metrics

– Foveated Mean Squared Error (FMSE) [3]

– Foveation-based content Adaptive Root Mean Squared Error 
(FARMSE) [4]

• Competitive with the best published objective video quality metrics

• Calculation complexity significanty reduced with respect to the best 
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• Calculation complexity significanty reduced with respect to the best 
published objective video quality metrics
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Thank you for your attention.
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