First Croatian Computer Vision Workshop (CCVW 2012) September 20-21, 2012, Zagreb, Croatia

Center for Computer Vision Activities: Computer vision for visual quality inspection

Tomislav Petković and Sven Lončarić Image Processing Group University of Zagreb

Outline

- 1. About machine vision in general
- 2. Case study:

Machine vision for fault prevention

3. Case study:

Simple machine vision toolbox

Basic structure of an industrial machine vision solution

camera and ilumination

products

product/material/process flow

image acquisition

process control and image processing unit

user interface

Designing a Machine Vision System

Camera:

 type (line or area), field of view, resolution, frame rate, sensor type, sensor spectral range

Lens

focal length, aperture, flange distance, sensor size, lens quality

Illumination

 direction, spectrum, polarization, light source, mechanical adjustment elements

Software

libraries to use, API ease of use, software structure, algorithm selection

Putting everything together

accuracy, time performance, cost, development and installation

Desing guidelines

- Camera, lens and illumination are the most important part of a machine vision system
 - acquisition errors are difficult or impossible to remove or correct during processing
- Also keep in mind:
 - mechanical reproducibility (often overlooked by software people)
 - tolerances
 - distances

Case 1: Fault Prevention

- Molding the base of an energy regulator for electrical stoves at Elektro-kontakt d.d. Zagreb plant
- Motivation
 - if molded part is not ejected properly serious fault can occur
 - repairs are 5000 to 10000€
 - downtime up to 1 week
- Requirements:
 - at least 1 meter clearance for robotic manipulators
 - maximal inspection time is 1 second
 - must be self-calibrating

What is inspected?

- Dimensions
 - 41 mm wide
 - 43 mm tall
- 8 contacts must be inspected
- There are 8 products per mold
- Total of 64 inspections

Laboratory setup

System desing

- Camera:
 - Smartek Giganetix GC2591C, 2592x1994, 1/2.5"
 - area type, CMOS, rolling shutter, up to 15 fps
- Lens
 - Fujinon 2/3" HF12.5SA-1
 - high resolution C-mount lens
- Illumination
 - custom made white LED field using 32 Hebei I.T. S12PW6C high efficiency white LEDs
- Software
 - Smartek GigEVision SDK, Advantech BioDAQ SDK, OpenCV
 - three layers to the application:
 - 1. processing part C++ (speed)
 - 2. C++/CLI middle layer (link to GUI)
 - 3. WPF for graphical user interface

Workflow

- 1. Image acquisition
- 2. Registration
 - additional filtering of registration parameters (Kalman Filter) required
- 3. Part inspection
 - preformed concurrently
 - adopted line detection algorithm [Steger1998, PAMI]
 - length is measured
 - adjustment for individual contacts required
- 4. Result output
 - stop signal
 - result storage for offline analysis

Factory setup

Case study 2: Vision Toolset

- Quality inspection requires similar measurements at different locations along the assembly/production line
 - length, area, angle and intensity measurements
- Ideal task for under-graduate or master students
- Each inspection tool designed as a simple plug-in
 - image acquisition, display and process control parts are already solved

Interface

Inspection tools

Contact alignment inspection

Rivet inspection

Contact type inspection

Shaft classification

Acknowledgment

- Elektro-kontakt d.d.
 - I. Tabaković, M. Hržan, J. Sajko
- Undergraduate students
 - D. Hrenek, K. Bešenić, D. Petek, D. Vujaklija, F.
 Pozaić