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Instantaneous blind source separation

Problem:

X=AS X∈RNxT, A∈RNxM, S∈RMxT

Goal: find A and S based on X only, whereas number of sources M is 
unknown and can be less than, equal to or greater than number of
measurements N. Herein, T stands for number of samples.

Solution X=AT-1TS must be characterized with T= PΛ where P is 
permutation and Λ is diagonal matrix i.e.: Y ≅ PΛS

A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.
A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002.
P. Comon, C. Jutten, editors, “Handbook of Blind Source Separation,” Elsevier, 2010.
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•source signals si(t) must be statistically independent.

•source signals sm(t), except one, must be non-Gaussian.

•mixing matrix A must be full column rank (number of mixtures N must 
be greater than or equal to number of sources M).

Independent component analysis (ICA)
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P. Common, “Independent Component Analysis – a new concept ?”, Signal Processing,36(3):287-314.
A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.
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ICA-based probabilistic approach to sparse coding

Sparse coding refers to a basis (dictionary), D, learning process such that signal x can 
be described in D by using few basis vectors (atoms) only, i.e.

x=Dc

where x∈RN , D∈RN×M , c ∈RM , M≥N and 
||c||0=k such that k<<M. 

When M>N dictionary is overcomplete. That is of practical interest since results in
inpainting and denoising are better when dictionary is overcomplete (a frame).
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ICA-based probabilistic approach to sparse coding

ICA is applied for solving instantaneous BSS problem:

X=AS,  A∈RN×M  S∈ RM×T

“Classical” ICA methods solve complete (determined and over-determined) BSS 
problems: M≤N. That was one of the main arguments against using ICA for sparse 
coding/dictionary learning. 

Some ICA algorithm such as FastICAa can be extended to overcomplete problemsb. The 
condition is that components (sources) have sparse distributions. Hence, ICA can be 
useful in solving sparse coding problem.c
aA. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component analysis, Neural Comput. 9 (1997), 
1483-1492.
bA. Hyvärinen, R. Cristescu, E. Oja, A fast algorithm for estimating overcomplete ICA bases for image windows, 
in: Proc. Int. Joint Conf. on Neural Networks, Washington, D.C., 1999, 894-899.
cM. Filipović, I. Kopriva (2011). A comparison of dictionary based approaches to inpainting and denoising 
with an emphasis to independent component analysis learned dictionaries, Inverse Problems and 
Imaging, vol. 5, No. 4, (2011), 815-841.



First Croatian Computer Vision Workshop (CCVW 2012), September 21, 2012.
“Sparse component analysis: sparse coding, inpainting, denoising and segmentation”

ICA-based probabilistic approach to sparse coding

When blind source separation problem, X=AS, is solved by ICA we are looking for 
sources that are, possibly, statistically independent and non-Gaussian. 

In information-theoretic ICA methodsa-c, statistical properties (distributions) of the 
sources are not precisely known. The learning equation W≅A-1 (y=Wx) has the form:

where ϕ(y)=(-1/pm)(dpm/dym) is the score function.

{ }T( 1) ( ) ( ) ( )k k E kη ϕ⎡ ⎤+ = + −⎣ ⎦W W I y y W

aA. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind
deconvolution,” Neural Comp. 7, 1129-1159, 1995.
bD. T. Pham, “Blind separation of mixtures of independent sources through a quasimaximum likelihood approach,”
IEEE Trans. Signal Processing 45, pp. 1712-1725, 1997.
cD. Erdogmus, K. E. Hild II, Y. N. Rao and J.C. Principe, “Minimax Mutual Information Approach for Independent 
Component Analysis,” Neural Computation, vol. 16, No. 6, pp. 1235-1252, June, 2004.



First Croatian Computer Vision Workshop (CCVW 2012), September 21, 2012.
“Sparse component analysis: sparse coding, inpainting, denoising and segmentation”

ICA-based probabilistic approach to sparse coding

The unknown density functions pm can be parameterized, as an example, using 
generalized Gaussian densitya, b

With the single parameter αm (called Gaussian 
exponent) super-Gaussian distributions (αm <2) 
and sub-Gaussian distributions (αm >2) could be 
modeled.

aS. Choi, A. Cichocki, S. Amari, Flexible Independent Component Analysis,” J. VLSI Signal Process. Sys. 26 
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(2000) 25-38.
bL. Zhang, A. Cichocki, S. Amari, Self-adaptive blind source separation based on activation function  adaptation, 
IEEE Trans. Neural Net. 15 (2004) 233-244. 
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ICA-based probabilistic approach to sparse coding

If generalized Gaussian probability density function is inserted in the optimal form for 
score function the expression for flexible nonlinearity is obtained:

1( ) ( ) αϕ −= m

m m m my sign y y

If a priori knowledge about statistical distributions of the source signals is available αm
can be fixed in advance. For example if source signals are super-Gaussian αm can be 
set to αm=1.

In sparse coding problem X=DC we want code C to be sparse (by design). Hence, if C 
is interpreted as a source matrix and D as mixing/basis matrix we can a priori select the 
nonlinear score functions to generate sparse code. 

Thus, sparse coding can be seen as optimally tuned BSS!!!. The basis D is 
learned/obtained as a byproduct. 9/47
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FastICA algorithm has information-theoretic interpretation and employs fixed-point 
maximization of the cost function that approximates negentropy of the code cm: 

where ν is standardized Gaussian variable. Assuming that G(cm)=-log(pm(cm)) in 
marginal entropies of mutual information cost function I(c), above approximation can be 
obtained from I(c). Hence, nonlinear functions in FastICA can also be selected a priori to 
generate sparse (super-Gaussian) code cm. 

tanh(acm)nonlinearity is associated with G(cm)=(1/a)log(cosh(acm)). In this case G(cm) 
approximates density function:

that models sparse distributions.
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ICA-based probabilistic approach to sparse coding
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ICA-based probabilistic approach to sparse coding

Probability density functions induced by tanh
nonlinearity with a=5 and generalized Gaussian pdf
with α=1, which models Laplacian pdf.
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The dictionary learning problem is organized in the patch space. Then, x denotes
vectorized image patch I∈Rsqrt(N)×sqrt(N).

Image 
patches

Vectorization
preprocessing

ICA 
basis

K-SVD 
basis

ICA-based probabilistic approach to sparse coding
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ICA-based probabilistic approach to sparse coding

aD. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” The Journal of 
Physiology (1968), pp. 215-243.
bB. A. Olshausen, D. J. Field, “Emergence of simple-cell receptive field properties by a learning sparse code of natural 
images,” Nature 381 (1996), 607-609. 
c M. Rehn, F. T. Sommer, “A network that uses few active neurons to code visual input predicts the diverse shapes of 
corctical receptive fields,” J. Comp. Neurosc. (2007), 135-146.

The sparse coding constitutes mathematical reproduction of experimentally observed 
behavior that primary visual cortex area of the mammals’ brain processes visual information 
by receptive fields (neurons) that respond to localized oriented edges in visual scenes.a

The first computational model in the literature partially explained experimental evidence has 
been presented in reference b. The underlying principle behind sparse coding models is the 
principle of efficient coding,c which assumes that organisms are adapted to maximize 
efficiency of information processing (representing visual scene by few basis elements / 
receptive fields).

It is evident that learned basis vectors also represent texture information contained in the 
image. Thus, computational methods of sparse coding are also useful for feature extraction. 
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Sparse component analysis
Underdetermined BSS occurs when number of measurements N is less than 
number of sources M. Resulting system of linear equations 

x=As

is underdetermined. Without constraints on s unique solution does not exist 
even if A is known:

s=sp + sh = A†x + Vz    AVzh=0

where V spans M-N dimensional null-space of A.

However, if s is sparse enough A can be identified and unique solution for s
can be obtained. That is known as sparse component analysis (SCA).
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Provided that prior on s(t) is Laplacian, maximum likelihood approach to 
maximization of posterior probability P(slx,A) yields minimum L1-norm as the 
solution:
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Sparse component analysis

SCA-based solution of the uBSS problem is obtained in two stages: 

1) estimate basis or mixing matrix A using data clustering, ref. a.

2) estimating sources s solving underdetermined linear systems of        
equations x=As. Provided that s is sparse enough, solution is obtained  
at the minimum of L1-norm, ref. b and c. 

a F. M. Naini, G.H. Mohimani, M. Babaie-Zadeh, Ch. Jutten, "Estimating the mixing matrix in Sparse Component 
Analysis (SCA) based on partial k-dimensional subspace clustering," Neurocomputing 71 (2008), 2330-2343.
b Y. Li, A. Cichocki, S. Amari, "Analysis of Sparse Representation and Blind Source Separation," Neural 
Computation 16 (2004), 1193-1234.
c D. L. Donoho, M. Elad, "Optimally sparse representation in general (non-orthogonal) dictionaries via l1
minimization," Proc. Nat. Acad. Sci. 100 (2003), 2197-2202.
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• Solving underdetermined system of linear equations x=As amounts to solving:

or for problems with noise or approximation error:
2
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Sparse component analysis
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Minimization of L0–norm of s is combinatorial problem that is NP-hard. 
For larger dimension M it becomes computationally infeasible. Moreover, 
minimization of L0–norm is very sensitive to noise i.e. presence of 
small coefficients 17/47
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Sparse component analysis
Replacement of L0-norm by L1-norm is done quite often. That is known as convex 
relaxation of the minimum L0-norm problem. This leads to linear program:
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L1-regularized least square problem, ref. a, b:

and L2-regularized linear problem, ref. b, c:
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a S..J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, "An Interior-Point Method for Large-Scale -Regularized Least Squares,“
IEEE Journal of Selected Topics in Signal Processing 1, 606-617 (2007), http://www.stanford.edu/~boyd/l1_ls/. 
b E. van den Berg, M.P. Friedlander, “Probing the Pareto Frontier for Basis Pursuit Solutions,” SIAM J. Sci. Comput. 31, 890-912 
(2008).
c M.A.T. Figuiredo, R.D. Nowak, S.J. Wright, "Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing 
and Other Inverse Problems," IEEE Journal on Selected Topics in Signal Processing 1, 586-597 (2007).
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SCA : Lp norm minimization: 0< p ≤1
Minimizing Lp-norm, 0<p<1, of s yields better performance when solving 
underdetermined system x=As than when using L1-norm minimization.

1 /
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∑sLp-norm of [s1 0.1] : 

This occurs despite the fact 
that minimization of Lp-norm, 
0<p<1 is non-convex problem. 
Yet, in practical setting (when 
noise or approximation errors 
are present) its local minimum 
can be smaller than global 
minimum of L1 i.e. min Lp-norm 
solution is sparser than min L1-
norm solution.
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SCA – Lp norm minimization: 0< p ≤1
The idea of ref. a was to replace L0-norm by continuous parametric 
approximation:

0
( )M Fσ≈ −s s

where:
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approximates indicator function of a set {0}.

aH. Mohimani, M. Babaie-Zadeh, C. Jutten, “A fast approach for overcomplete sparse decomposition based on 
smoothed L0 norm,” IEEE Trans. Signal Process. 57 (2009) 289-301.



First Croatian Computer Vision Workshop (CCVW 2012), September 21, 2012.
“Sparse component analysis: sparse coding, inpainting, denoising and segmentation”

SCA – Lp norm minimization: 0< p ≤1

Smaller parameter σ brings us closer to L0(s), while larger σ yields smoother 
approximation that is easier to optimize. 

Minimizing approximation of L0(s) is equivalent to maximize Fσ(s). The idea is 
to maximize Fσ(s) for large σ and than use obtained solution as initial value 
for next maximization of Fσ(s) for smaller σ. 

Matlab code for smooth L0 algorithm can be downloaded from:

http://ee.sharif.ir/~SLzero/
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0

SCA – Lp norm minimization: 0< p ≤1

[ ] 20 log
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s
s s 22/47
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Unsupervised segmentation of multispectral images
Consider blind decomposition of the RGB image (N=3) composed of four 
materials (M=4): 

23/47

I. Kopriva and A . Cichocki, “Sparse component analysis-based non-probabilistic blind decomposition of low-
dimensional multi-spectral images,” Journal of Chemometrics, vol. 23, Issue 11, pp. 590-597 (2009). 
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Unsupervised segmentation of multispectral images
For image consisting of N spectral bands and M objects linear data model is assumed:

1

M
m mm
s

=
= =∑x As a [ ]...1 2 M ≡a a a A

x - measured data intensity vector, x ∈ RNx1

A ∈ RNxM: unknown spectral reflectance matrix: column vectors are also called
endmembers (they represent spectral profiles of the objects/materials present 
in the image). Non-singularity condition implies ai≠aj.

s ∈ RMx1: sm are called abundances. If constraint                      is applied sources 

represent percentage of objects presence in the pixel footprint. Sources sm could be 
recovered by unsupervised and properly constrained factorization of X.

1
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Unsupervised segmentation of multispectral images

Evidently degree of overlap between materials in spatial domain is very small 
i.e. sm(t)*sn(t)≈δnm. Hence RGB image decomposition problem can be 
solved with some SCA algorithm. Here, clustering and sparseness constrained 
minimization of Lp-norm have been used. 

For the Lp-norm minimization approach estimate of the mixing A and number of 
materials M is necessary. 

Because materials in principle do not overlap in spatial domain it applies    
||s(t) ||0≈1.
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Unsupervised segmentation of multispectral images
Assuming unit L2-norm of am we can parameterize column vectors in 3D space 
by means of azimuth and elevation angles  

T[cos( )sin( ) sin( )sin( ) cos( )]m m m m m mϕ θ ϕ θ θ=a

Due to nonnegativity constraints both angles are confined in [0,π/2]. Now 
estimation of A and M is obtained by means of data clustering algorithm: 

We remove all data points close to the origin for which applies:
where ε represents some predefined threshold.

{ }2 1
( )

T

t
t ε

=
≤x

Normalize to unit L2-norm remaining data points x(t), i.e.,                                  ( ) ( ) ( ){ }2 1

T

t
t t t

=
→x x x
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Unsupervised segmentation of multispectral images
Calculate function f(a): 
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where                               and            denotes inner product. Parameter σ is 
called dispersion. If set to sufficiently small value the value of the function f(a) 
will approximately equal the number of data points close to a. Thus by varying 
mixing angles 0≤ϕ,θ≤π/2 we effectively cluster data. 
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Number of peaks of the function f(a) corresponds with the estimated number of 
materials M. Locations of the peaks correspond with the estimates of the mixing 
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Unsupervised segmentation of multispectral images
For shown experimental RGB image clustering function is obtained as: 

Four peaks suggest existence of four materials in the RGB image i.e. M=4.
28/47
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Unsupervised segmentation of multispectral images
Spatial maps of the materials extracted by HALS NMF with 25 layers,a linear 
programming and interior point methodb are obtained as:

a) 25 layers HALS NMF; b) Interior point method, ref. a; c) Linear programming.
a A. Cichocki, R. Zdunek, S.I. Amari, Hierarchical ALS Algorithms for Nonnegative Matrix Factorization and 3D 
Tensor Factorization, LNCS 4666 (2007) 169-176
b S. J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, "An Interior-Point Method for Large-Scale  L1 -Regularized 
Least Squares,"IEEE Journal of Selected Topics in Signal Processing 1, 606-617 (2007).
http://www.stanford.edu/~boyd/l1_ls/.
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Unsupervised segmentation of multispectral images
Sparseness constrained NMF in combination with nonlinear dimensionality expansion mapping
yields contrast-enhanced segmentation of the RGB image of unstained specimen in 
histopathology.a

First row: gray scale (green component) 
image of the nervus ischiadicus obtained 
without contrast agent (i.e. staining) and 
corresponding iso-controur map.

Second row: corresponding component after 
decomposition and corresponding iso-
contour map.

aI. Kopriva, M. Hadžija, M. Popović-Hadžija, M. Korolija, A. Cichocki (2011). Rational Variety Mapping for 
Contrast-Enhanced Nonlinear Unsupervised Segmentation of Multispectral Images of Unstained Specimen, 
American Journal of Pathology, vol. 179, No. 2, pp. 547-553. 30/47
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Inpainting
Inpainting problem is described as:

y=Mx=MDc=Φc

where column-wise vectorized image x∈RN is to be reconstructed from the vector of 
known pixels y∈RL , L < N. M∈RL×N contains 0s and 1s and is representing layout of 
the missing values. D∈RN×M, Φ∈RL×M c∈RM M≥N>L. 

Hence, above system of equations is underdetemined. Smoothed L0 algorithma has 
been used in experiments performed in ref. b and reported herein.

aH. Mohimani, M. Babaie-Zadeh, C. Jutten, “A fast approach for overcomplete sparse decomposition based on 
smoothed L norm,” IEEE Trans. Signal Process. 57 (2009) 289-301.0 
bM. Filipović, I. Kopriva (2011). A comparison of dictionary based approaches to inpainting and denoising 
with an emphasis to independent component analysis learned dictionaries, Inverse Problems and 
Imaging, vol. 5, No. 4, 815-841.
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Denoising (high density) salt and pepper noise
Denoising problem: y=x+n Estimate x based on y. For n~N(0,σ2) 
maximizing a posteriori probability yields:

where φ(x) is prior on x. However, for impulsive noise variance is infinite. 
Likelihood p(y|x) is heavy tailed. Very often used model is Cauchy density but 
analytic form may even not exist.

Nonlinear filters such as median and myriad filters are optimal if noise 
distribution is respectively Lalpace or Cauchy.a Image is processed locally by 
windows of LxL. The filtered pixel value is weighted median or weighted myriad 
in LxL neighborhood of the pixel. For high density noise the window size L has 
to be increased and that leads to blurring.

( )2
2 2

1ˆ argmin
2

φ
σ

= − −
x

x y x x

aG. R. Arce, Nonlinear Signal Processing - A Statistical Approach, J. Wiley, 2005.
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Denoising (high density) salt and pepper noise
Salt and pepper noise corrupts image in a way that pixels are very bright (salt) 
or very dark (pepper). Sometimes denoising of such pixels is called
desaturation. a,b 

Such pixels are easy to detect and can be declared as missing. Thus, denoising 
of (high density) salt and pepper noise becomes effectively “noiseless”
inpainting problem. 

While method in ref. a has been using fixed basis we provide solution in learned 
dictionary. While method in ref. b relies on correlation structure of the image we 
do not use any specific assumption in this regard.  

a H. Mansour, R. Saab, P. Nasiopoulos, R. Ward, “Color image desaturation using sparse reconstruction,” in Proc. 
2010 ICASP, Dallas, TX, USA, (2010), 778-781.
b X. Zhang, D. H. Brainard, “Estimation of saturated pixel values in digital color imaging,” J. Opt. Soc. Amer. A, 21
(2004), 2301-2310.
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Experiments: basis learning
All the experiments have been run in MATLAB 7.7 environment on a 3 GHz 
dual core processor with 2GB of RAM.

We have used six training imagesa to extract randomly 18000 patches (3000 
per image) of the size 16x16 pixels. All the patches were vectorized and mean 
has been removed from each patch. The data matrix X was of the size 
256x18000.

The patch size in the experiments varies between 8x8  to 16x16 pixels.

256x256 basis has been learned by K-SVD (with 40 nonzero coefficients of the 
code) in 5 hours and by FastICA in 3 hours.  

a A. Olmos, F. A. A. Kingdom, McGill calibrated colour image database, 2004., 
http://pirsquared.org/research/mcgilldb/
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Experiments: validation set
Six images were selected randomly from the same web site to perform 
comparative performance analysis of the methods on various types of
inpainting problems.
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Experiments: performance measures
As performance measures we have used PSNR in [dB] and structural similarity 
index (SSIM)a,b .

The SSIM better corresponds/reflects subjective quality of visual perception. 
PSNR (it is based on mean square error) can give high values that not always 
correspond well with the subjective quality of visual perception.

SSIM has values between -1 and 1, achieving maximal value 1 if and only if the 
images being compared are equal. MATLAB code for computing the SSIM is 
available at: http://www.ece.uwaterloo.ca/~z70wang/research/ssim/

a Z. Wang, A. Bovik, Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal 
Process. Mag. 26(1) (2009) 98-117.
bZ. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural 
similarity, IEEE Trans. Image Process. 13(4) (2004) 600-612.
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Experiments: image reconstruction details
In all reported image reconstruction (inpainting) experiments the smoothed L0
(SL0) algorithma,b has been used. 

Numerical experiments have been performed to compare SL0 algorithm against 
OMP algorithm and interior point methodc,d used to solve L1-regularized least 
square problem.

On average, reconstruction using L1-ls took 10 to 15 minutes per image, while 
the SL0 took around 30 seconds per image only. The OMP yielded significantly 
worse quality of reconstructed images. 

aH. Mohimani, M. Babaie-Zadeh, C. Jutten, A fast approach for overcomplete sparse decomposition based on 
smoothed  norm, IEEE Trans. Signal Process. 57 (2009) 289-301.
bhttp://ee.sharif.ir/~SLzero/
c S. J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, An Interior-Point Method for Large-Scale -Regularized 
Least Squares, IEEE J. Sel. Top. Signal Process. 1 (2007), 606-617.
d http://www.stanford.edu/~boyd/l1_ls/
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Experiments: image reconstruction details
For each patch, before reconstruction, the mean value has been removed and 
added back after reconstruction. Thus, DC component was artificially added in 
reconstruction yielding better results than if it has been a part of the basis.

To prevent border effects, reconstruction has been done such that the adjacent 
patches overlapped in two rows and two columns. After reconstruction 
overlapping regions were averaged. 

In comparative performance analysis we have also used the FoE and MCA 
methods. MCA used curvelet dictionary for the cartoon part and 2D cosine 
packets for the texture part of the image. Parameters used with MCA were as 
specified in the MCALab package (32x32 patches for cosine packets, coarsest 
scale for curvelets 2, iterative hard thresholding with 300 iterations for 
reconstruction). For FoE method default parameters were used, as suggested 
in the MATLAB package, as well. 38/47
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Experiments: image reconstruction details
For a random pattern of missing pixels each inpainting experiment has been 
repeated 10 times and the final performance measure has been obtained as an 
average. 

Since MCA and FoE were slow (the MCA took around 50 minutes per image, 
while the FoE took around 5 hours per image) the inpainting experiments have 
been not repeated 10 times for these methods. 
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Experiments: denoising 80% dense pepper noise
Salt and pepper noise generates random pattern of missing values and that is the 
easiest inpainting problem to solve. Complete basis: 256x256.

ICA  basisCorrupted images K-SVD  basis
40/47
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Experiments: denoising 80% dense pepper noise

Complete basis: 256x256.
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Experiments: inpainting missing pattern with a block structure

Recovered missing regions are 
blurry but that is a known effect 
when larger missing regions are 
being inpainted.
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Experiments: inpainting missing pattern with a line structure

Inpainting in ICA learned dictionary on this example is not as good as in dictionary 
learned by FoE: S. Roth, M. J. Black, Fields of experts, Int. J. Computer Vision 82 
(2009) 205-229. 

However, results are decent considering striking difference in computational 
complexity: less than a minute for ICA/SL0 combination vs. 5 hours for FoE.
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Experiments: inpainting missing pattern with a “text” structure

For this example the images and corresponding mask of missing pixels were taken from: 
http://www.dtic.upf.edu/~mbertalmio/restoration0.html.
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Experiments: denoising 5% and 20% dense salt noise

5% of corrupted pixels 

20% of corrupted pixels 

2D 5x5 myriad filter  Inpainting in ICA basis  
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Experiments: denoising 5% and 20% dense salt noise
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THANK YOU !!!!!!!!
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