One-shot pattern projection for dense and accurate 3D acquisition in structured light

Sergio Fernandez Supervisor: Prof. Joaquim Salvi

Universitat deGirona

Computer Vision and Robotics group (VICOROB). University of Girona

3D acquisition is used by any device aiming to understand the environment where is being involved or where an action is required. Stereovision is used to this end.

Active stereovision solves the problem of finding correspondences in low textured surfaces.

A camera is substituted by an active device like a Digital Light Projector (active).

Jniversitat

Motivation

Active stereovision is used in many applications: range sensoring, industrial inspection, reverse engineering, object recognition, 3D map building, 3D surgery, biometrics...

Universitat

Challenges and proposed solutions in CSL

Dynamic scenarios \rightarrow One-shot projection.

High level of detail \rightarrow Dense reconstruction.

Absolute depth acquisition \rightarrow Absolute coding.

Accuracy.

	One-shot projection	Dense reconstruction	Absolute coding	Accuracy
DeBruijn pattern	\checkmark	×	\checkmark	\checkmark
Fringes pattern	\checkmark	\checkmark	×	\checkmark
Multiple phase shifting	×	\checkmark	\checkmark	\checkmark
Spatial grading	\checkmark	\checkmark	\checkmark	×

Universitat

- 1. State of the art
- 2. First approach to one-shot dense reconstruction
- 3. Automatic window selection in Frequency Transform techniques
- 4. One-shot absolute pattern for dense reconstruction
- 5. Registration of single views from structured light
- 6. Conclusions

1. State of the art

- 2. First approach to one-shot dense reconstruction
- **3.** Automatic window selection in Frequency Transform techniques
- 4. One-shot absolute pattern for dense reconstruction
- 5. Registration of single views from structured light
- 6. Conclusions

Classification of SL techniques

Introduction	State of the art	First approach	Automatic window width WFT	One-shot dense pattern	Registration	Conclusions

Universitat de Girona

Classification of SL techniques

AR
Universitat
deGirona

duction	State c	of the art First	t approach Au	tomatic window w	idth WFT	0	ne-shot	dense	patter	n F	Registrati	on Con	clusio
			De Bruijn	Boyer	1987	1	1	1	С	Α	Y	Ν	
				Salvi	1998	1	1	1	С	А	Y	Y	
				Monks	1992	1	1	1	С	Α	Y	Ν	
				Pages	2004	1	1	1	С	Α	Y	Ν	
				Forster	2007	1	1	1	С	Α	Y	Ν	
	s	SPATIAL	Non	Fechteler	2008	1	1	1	С	Α	Y	Ν	
	Р	Multiplexing	formal	Tehrani	2008	1	2	1	С	Α	N	Y	
	R			Maruyama	1993	1	1	2	В	Α	N	Y	
	S			Kawaski	2008	1	1	2	C	Α	N	Y	
	E			Ito	1995	1	1	2	G	Α	N	Y	
				Koninckx	2006	1	1	2	С	Р	Y	Y	
			M-Array	Griffin	1992	1	1	2	С	Α	Y	Y	
				Morano	1998	1	1	2	С	Α	Y	Y	
				Pages	2006	1	1	2	С	Α	Y	Ν	
				Albitar	2007	1	1	2	B	Α	N	Y	
			Binary codes	Posdamer	1982	>2	1	1	B	Α	N	Y	
		TIME		Ishii	2007	>2	1	1	B	Α	N	Ν	
		Multiplexing		Sun	2006	>2	2	1	B	Α	Y	Y	
			N-ary codes	Caspi	1998	>2	1	1	С	Α	N	Ν	
					-	Shots	Cameras	Axis	Pixel depth	Coding strategy	Subpixel accuracy	Color	

Classification of SL techniques

Introduction	State of the art	Fir	rst approach	Automat	ic window v	width \	NFT	0	ne-s	hot d	ense p	pattern		Registration	Conclusions
				Discrete	Zhang	2002	>2	1	1	С	Α	Y	N]	
			shifting	Sansoni	2000	>2	1	1	G	Α	Y	Y			
		TIME		Guhring	2001	>2	1	1	G	А	Y	Y			
		Multiplexing	Single Phase	Srinivasan	1985	>2	1	1	G	Р	Y	Y			
			Shifting (SPS)	Ono	2004	>2	1	1	G	Р	Y	Y			
				Wust	1991	1	1	1	С	Р	Y	N			
					Guan	2004	1	1	1	G	Р	Y	Y		
				MultiplePhase	Gushov	1991	>2	1	1	G	A	Y	Y		
	D E			Pribanić	2009	-2	1	1	G	А	Y	Y			
		N		•	Takeda	1983	1	1	1	G	Р	Y	Y]	
	E		Single coding	Cobelli	2009	1	1	1	G	Р	Y	Y			
			FREQUENCY	frequency	Su	1990	2	1	1	G	Р	Y	Y		
			Multiplexing		Hu	2009		2	1	G	Р	Y	Y		
					Chen	2007	1	1	1	С	Р	Y	N		
					Yue	2006	1	1	1	G	Р	Y	Y		
					Chen	2005	2	1	1	G	Р	Y	Y		
					Berryman	2008	1	1	1	G	Р	Y	Y		
					Gdeisat	2006		1	1	G	Р	Y	Y		
					Zhang	2008		1	1	G	Р	Y	Y		
					Lin	1995	2	1	1	G	Р	Y	Y		
					Huang	2005	>2	1	1	G	Р	Y	Y		
				Jia	2007	2	1	1	G	Р	Y	Y			
				Wu	2006	1	1	1	G	Р	Y	Y			
					Fernandez	2010	1	1	1	С	A	Y	N		
			SPATIAL multiplexing	Grading	Carrihill	1985	1	1	1	G	Α	Y	N		
			manipicsing		Tajima	1990	1	1	1	С	Α	Y	N		
							Shots	Cameras	Axis	Pixel depth	Coding strategy	Subpixel accuracy	Color		

FREQUENCY MULTIPLEXING: phase decoding is performed in the frequency domain.

Fourier Transform

φ

Recovered sinusoidal pattern $I(x, y) = a(x, y) + c(x, y) \cdot e^{2\pi f_{\phi} \cdot y} + c * (x, y) \cdot e^{-2\pi f_{\phi} \cdot y}$

$$(x, y) = imag(log(c(x, y)))$$

$$h(x, y) = \frac{L \cdot \Delta \phi(x, y)}{\Delta \phi(x, y) - 2\pi f_0 d} \quad \longrightarrow \quad \begin{cases} \text{Fails for h>L/3d} \\ \text{Freq. overlapping} \end{cases}$$

FREQUENCY MULTIPLEXING: phase decoding is performed in the frequency domain.

Fourier Transform
Recovered sinusoidal pattern
$$I(x, y) = a(x, y) + c(x, y) \cdot e^{2\pi f_{\phi} \cdot y} + c * (x, y) \cdot e^{-2\pi f_{\phi} \cdot y}$$

 $\phi(x, y) = imag(\log(c(x, y)))$ $h(x, y) = \frac{L \cdot \Delta \phi(x, y)}{\Delta \phi(x, y) - 2\pi f_0 d} \longrightarrow \begin{cases} \text{Fails for h>L/3d} \\ \text{Freq. overlapping} \end{cases}$

Windowed Fourier Transform: input signal is split into segments.

$$Sf(u, v, \epsilon, \eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \cdot g(x - u, y - v) \cdot \exp(-j\epsilon x - j\eta y) dx dy$$

Optimal width? Get carrier freq. \Longrightarrow Freq.overlapping

 $\phi(x)$

FREQUENCY MULTIPLEXING: phase decoding is performed in the frequency domain.

Fourier Transform
Recovered sinusoidal pattern
$$I(x, y) = a(x, y) + c(x, y) \cdot e^{2\pi f_{\phi} \cdot y} + c * (x, y) \cdot e^{-2\pi f_{\phi} \cdot y}$$

 $\phi(x, y) = imag(\log(c(x, y)))$ $h(x, y) = \frac{L \cdot \Delta \phi(x, y)}{\Delta \phi(x, y) - 2\pi f_0 d} \longrightarrow \begin{cases} \text{Fails for h>L/3d} \\ \text{Freq. overlapping} \end{cases}$

Windowed Fourier Transform: input signal is split into segments.

$$Sf(u, v, \epsilon, \eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \cdot g(x - u, y - v) \cdot \exp(-j\epsilon x - j\eta y) dx dy$$

Optimal width? Get carrier freq. $\langle - \rangle$ Freq.overlapping

Wavelet Transform: freq. decreases > window size increases. Dyadic net: the size of the wavelet is modified by the factor 2j.

 ϕ

- 1. The ultimate techniques study:
 - One-shot pattern projection (spatial multiplexing).
 - Dense reconstruction (phase shifting and Frequency multiplexing).
- 2. Frequency multiplexing achieves these two points. However, errors arise due to frequency overlapping and the unwrapping step.
 - Frequency overlapping caused by a sub-optimal windowing.
 - Unwrapping does not provide absolute coding.
- **3**. Spatial grading is no longer studied, due to its high sensitivity to noise.

Can we skip the phase unwrapping step?

The Remainder Theorem can be used to obtain absolute coding from a wrapped phase

1. State of the art

2. First approach to one-shot dense reconstruction

- 3. Automatic window selection in Frequency Transform techniques
- 4. One-shot absolute pattern for dense reconstruction
- 5. Registration of single views from structured light
- 6. Conclusions

System proposal for WT + Remainder Theorem

Pattern creation and decoding

The remainder theorem

"Given two arbitrary fringe patterns where their frequencies are relative prime numbers between them (i.e., their greatest common divisor is 1):

$$\Phi_{absol} = k_1 \lambda_1 + \phi_{Ri} = k_2 \lambda_2 + \phi_{Ri}$$

That is, the absolute value can be extracted from a combination of the relative phase values of every fringe pattern.

2D WT

One-shot pattern projection for dense and accurate 3D acquisition in Structured Light

200

300 350

Pixels

Universitat

Errors arise under presence of discontinuities and slopes.

 Algorithm for the adaptive selection of the best analysis mother signal, in terms of frequency and shape?

New unwrapping approach?

- 1. State of the art
- 2. First approach to one-shot dense reconstruction
- **3**. Automatic window selection in Frequency Transform techniques
- 4. One-shot absolute pattern for dense reconstruction
- 5. Registration of single views from structured light
- 6. Conclusions

Comparative study between WFT and WT

WFT is given by:

$$Sf(u, v, \epsilon, \eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \cdot g(x - u, y - v) \cdot \exp(-j\epsilon x - j\eta y) dx dy$$

being (x,y), (ξ , η) the translation and frequency coordinates, and g(x,y) the windowing function.

WT (continuous) is given by: $WT_{f}(a,\theta,u,v) = \frac{1}{a} \int_{0}^{\infty} \int_{0}^{\infty} f(x,y) \cdot \psi[\frac{(x-u \cdot c(\theta)) - (y-v \cdot s(\theta))}{a}, \frac{(x-u \cdot s(\theta)) - (y-v \cdot c(\theta))}{a}] dx dy$ In discrete applications we compute the dilation factor *a* like $a = 2^k$ where: $k(y) = 0.5 + \log_2(\frac{f_c}{f_o}) - \log_2(\frac{\phi'_x}{2\pi f_o})$

Problem: the change introduced by the dyadic net is too high for fringe pattern. WT performs better with signals having a wide range of frequencies. niversitat

Comparative study between WFT and WT niversitat de Girona State of the art First approach Automatic window width WFT One-shot dense pattern Registration Conclusions Introduction

On the other hand, mother wavelet having <u>low-pass shape</u> perform optimal WT fringe analysis, thanks to the good localization in both frequency and space.

Is it possible to perform a fine adaptation of the window size, while preserving the analysis with mother wavelets?

Proposed algorithm for automatic WFT

- 1. State of the art
- 2. First approach to one-shot dense reconstruction
- 3. Automatic window selection in Frequency Transform techniques
- 4. One-shot absolute pattern for dense reconstruction
- 5. Registration of single views from structured light
- 6. Conclusions

Proposed algorithm for one-shot dense pattern

We propose a 3D Least Squares estimation technique with 2D calibration object. **The projector is regarded as the inverse of a camera.**

Pattern creation

Generated in the HSV space to minimize the crosstalk efect in the fringes (in V channel). •<u>Hue channel</u>: k-ary DeBruijn sequence with n = 3 and k=4 (length $n^k = 64$ fringes).

- Saturation channel: 1 for all pixels (max).
- <u>Value channel</u>: sinusoidal signal $I(x, y)=0.5+0.5 \cdot \cos(2\pi f_0 y)$

where **x** = 1,.. n and
$$f_0 = \frac{64}{n}$$

Due to the 2D nature of WFT (which may include some frequencies of adjacent positions in the Fourier Transform), the phase value of an specic position may have some deviation.

This effect is corrected by shrinking or expanding the wrapped phase accordingly to the DeBruijn correspondences for the maxima, using non-linear 4th order regression.

Qualitative results

Qualitative results

Qualitative results

Quantitative results and discussion

State of the art

Introduction

				de Girona
First approach	Automatic window width WFT	One-shot dense pattern	Registration	Conclusions

Technique	Average (mm)	Std (mm)	3D points	Patterns	Time (s)
Monks et al.	1,31	1,19	13899	1	45,29
Posdamer et al	1,56	1,40	25387	14	32,18
Guhring	1,52	1,33	315273	24	158,22
Pribanic et al.	1,12	0,78	255572	18	165,65
Carr. And Hummel	11,9	5,02	202714	1	150,57
Proposed technique	1,18	1,44	357200	1	160,75

	One-shot projection	Dense reconstruction	Absolute coding	Accuracy
DeBruijn pattern	\checkmark	×	\checkmark	\checkmark
Fringes pattern	\checkmark	\checkmark	×	\checkmark
Multiple phase shifting	×	\checkmark	\checkmark	\checkmark
Spatial grading	\checkmark	\checkmark	\checkmark	×
Proposed method	\checkmark	\checkmark	\checkmark	\checkmark

- 1. State of the art
- 2. First approach to one-shot dense reconstruction
- 3. Automatic window selection in Frequency Transform techniques
- 4. One-shot absolute pattern for dense reconstruction
- **5**. Registration of single views from structured light
- 6. Conclusions

A novel pipeline for coarse registration

Detection

DoG is applied on 6 different scales of filtering \rightarrow scale map $M_i^d(v)$:

 $M_{i}^{d}(v) = ||n(v) \cdot (g(v, \sigma_{i}) - g(v, 2\sigma_{i}))||$

Saliency map = sum of all scale maps.

Description (HoG)

1. Define the n-ring (1% of total).

2.Compute local coord. System (the 2nd direction is the max of 2D histogram).

• HoG = concatenation of 2D histogram.

Matching

1. Compute the correlation matrix between the set of keypoint descriptors from the 2 views.

2. Select only the 6 greatest matches.

3. For every pair of random triplets from view 1 and their correspondences in view 2:

- Check geometrical constraints.
- Apply rigid motion.
- Calculate residual.

- 1. State of the art
- 2. First approach to one-shot dense reconstruction
- 3. Automatic window selection in Frequency Transform techniques
- 4. One-shot absolute pattern for dense reconstruction
- 5. Registration of single views from structured light
- 6. Conclusions

- 1. A new classication of the SL approaches present in the literature.
- 2. A new one-shot dense pattern based on the Remainder Theorem.
- **3**. A study of the best frequency-based analysis for fringe pattern.
- **4**. A new algorithm for the automatic selection of the window size in WFT.
- 5. A one-shot pattern projection technique for 3D dense reconstruction.
- 6. A new pipeline for 3D alignment of partial views obtained from SL.

Publications

Journals

1. State of the art:

J. Salvi, S. Fernandez, T. Pribanic, "A sate of the art in structured light patterns for surface prolometry", **Pattern Recognition**, 34, pp 2666-2680, 2010. *46 cites*

2. Automatic window width:

S. Fernandez, M. Gdeisat, J. Salvi, D. Burton, "Automatic window size selection in windowed Fourier Transform for 3D reconstruction using adapted mother wavelets prolometry", Optics Communication, 284(12), pp 2797-2807, 2011. *4 cites*

3. Projector-camera calibration:

S. Fernandez, D. Fo, J. Salvi and J. Batlle. "Projector-camera calibration using a planar-based model". Submitted to International Journal of Pattern Recognition and Articial Intelligence.

4. One-shot dense pattern:

S. Fernandez and J. Salvi. "One-shot absolute pattern for dense reconstruction using DeBruijn coding and WFT". Submitted to **Image and Vision Computing**.

niversitat

Publications

Conferences

1. First approach:

S. Fernandez, J. Salvi and T. Pribanic. "Absolute Phase Mapping for One-shot Dense Pattern Projection". PROCAMS'2010, IEEE Workshop on Projector-Camera Systems, in conjunction with **CVPR**, Article number 5543483, Pages 64-71, San Francisco (USA) June 18, 2010.

2. Projector-camera calibration:

S. Fernandez, J. Salvi. "Planar-based Camera-Projector Calibration". IEEE 7th International Symposium on Image and Signal Processing and Analysis (ISPA 2011), Dubrovnik (Croatia), September 4-6, 2011.

3. Correspondences with two views:

S. Fernandez, J. Forest and J. Salvi. "Active stereo-matching for one-shot dense reconstruction". International Conference on Pattern Recognition Applications and Methods, Faro (Portugal) 6th/8th February 2012.

4. One-shot dense pattern:

S. Fernandez, J. Salvi. "A novel structured light method for one-shot dense reconstruction". IEEE International Conference on Image Processing (**ICIP 2012**). Coronado Spring, Florida (USA), September 30th - October 3th 2012.

niversitat

Publications

Book chapters

1. S. Fernandez and J. Salvi, "3D reconstruction strategies in Structured Light", in Handbook of 3D machine vision: Optical metrology and imaging, compiled by Song Zhang. In press.

Universitat

One-shot pattern projection for dense and accurate 3D acquisition in structured light

Sergio Fernandez Supervisor: Prof. Joaquim Salvi

Universitat deGirona

Computer Vision and Robotics group (VICOROB). University of Girona