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Coverage segmentation

• Coverage segmentation is the task of extracting coverage information
about objects in images.

• Estimate a vector of coverage values for each image element.

• Acts as a separator between imaging and feature extraction.
• Ensures that further processing can be made independent of imaging

modalities and imaging conditions.
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Coverage segmentation

Five methods which provide (approximate) coverage images:

1 Direct assignment of coverage values from a continuous model.
• A. Tanács, C. Domokos, N. Sladoje, J. Lindblad, and Z. Kato. Recovering affine deformations

of fuzzy shapes. SCIA 2009. LNCS-5575, pp. 735–744, 2009.

2 A method based on mathematical morphology and a double
thresholding scheme.

• N. Sladoje and J. Lindblad. High Precision Boundary Length Estimation by Utilizing Gray-Level

Information. IEEE Trans. on PAMI, Vol. 31, No. 2, pp. 357–363, 2009.

3 A framework (and methods) for coverage segmentations of graphs.
• F. Malmberg, J. Lindblad, I. Nyström. Sub-pixel segmentation with the image foresting transform.

IWCIA 2009. LNCS-5852, pp. 201–211, 2009.

• F. Malmberg, J. Lindblad, N. Sladoje, I. Nyström. A Graph-based Framework for Sub-pixel Image

Segmentation. Theoretical Computer Science. Vol 412, No 15, pp. 1338-1349, 2011.

4 A method providing local sub-pixel classification extending any
existing crisp segmentation.

• N. Sladoje and J. Lindblad. Pixel coverage segmentation for improved feature estimation.

ICIAP 2009. LNCS-5716, pp. 929-938, 2009.

5 An energy based method for regularized coverage segmentation.
• J. Lindblad and N. Sladoje. Coverage Segmentation Based on Linear Unmixing and

Minimization of Perimeter and Boundary Thickness. Pattern Recognition Letters. Vol 33, No.

6, pp. 728-738, 2012.
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Problem formulation

• We observe a 2D digital image I with b spectral bands.

• Let N be the number of pixels of the image and let the image data be

given as a matrix I = [pi,k]N×b such that a row contains intensities of

one pixel in each of the observed bands, and a column represents the

pixel intensities in one band, over the whole image.

• Our goal is to obtain a coverage segmentation of I corresponding to m

classes (objects) existing in the image, i.e., each pixel is assigned a

vector of length m whose components give the relative area of the pixel

covered by each of the m classes.

• A coverage segmentation of the image I is a matrix A = [αi,j]N×m where

αi,j ∈ [0, 1] is the coverage of the pixel with index i (i = 1, 2 . . . ,N) by a

class (object) Sj. Assuming spatially non-overlapping classes Sj each

row of A sums up to one.
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Linear unmixing

Models based on linear unmixing of image intensities are common in the

field of image processing, due to simplicity and wide applicability.

• We model the image intensities I as a non-negative linear mixture (a

convex combination) of pure class representatives (a.k.a.

end-members).1

• The pure class representatives can be written as a matrix C = [cj,k]m×b,

where cj,k is the (expected) image value of a class j in the band k.

• Using the introduced notation, we can, conveniently, express that I is

approximately a linear mixture of the end-members as follows

I ≈ A · C .

Note: This notation suggests that the end-members cj,k are position

invariant. This is not necessarily the case; we allow spatially varying class

representatives C = C(x). However, to not complicate notation, we write C

as an m× b matrix, and not as an N × m× b 3D tensor.

1 Appropriate determination of end-members is a subject of many studies and outside the scope
of this presentation.
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Data fidelity term

Considering the task of finding a coverage segmentation A, which fulfils

I ≈ A · C as well as possible, we define the following data fidelity term D(A),
for a given image I and a given end-member matrix C

D(A) = ‖I − AC‖2 ,

where ‖X‖ is the Frobenius norm (Euclidean norm) of a matrix X.

Minimization of D(A) (calculus of variations) constrained to A ∈ AN×m

provides a linear unmixing segmentation.

A
∗ = arg min

A∈AN×m

D(A)
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Data fidelity term
- an illustrative example

Example colour image with three
training regions (defining the
end-member matrix C) indicated.

A
∗ = arg min

A∈AN×m

D(A)

The lack of spatial information makes this type of coverage segmentation

noise sensitive. Also, the resulting segmentation is generally too fuzzy

(too many image pixels are classified as mixed).
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Properties of coverage representations
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• homogeneous connected regions of “pure” pixels

• separated by thin layers of “mixed” pixels
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More energy terms

We add two more criteria to our (so far “too noisy” and “too fuzzy”)

segmentation model.

(i) we favour a smooth boundary of each object;

(ii) we favour objects with majority of pixels classified as pure, whereas

mixed pixels appear only as thin boundaries between the objects.

Criterion (i) is implemented by inclusion of the (fuzzy) perimeter of the

objects as a term in the energy function to minimize. Criterion (ii) is imposed

by minimizing “thickness” of boundaries over the image, and also, to some

extent, minimizing overall fuzziness of the image.

These requirements are combined into the following energy function:

J(A) = D(A) + µP(A) + νT(A) + ξF(A) ,

where D,P, T,F are data term, overall perimeter, boundary thickness,

and total image fuzziness, and µ, ν, ξ ≥ 0 are weighting parameters.
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Perimeter, thickness, and fuzziness

Perimeter P(A) is the overall (fuzzy) perimeter of the m objects of a

coverage segmentation A

P(A) =
1

2

m∑

j=1

P(Aj) .

Thickness We define border thickness T of a coverage segmentation as

T(A) =
1

2

m∑

j=1

T(Aj) ,

where the thickness of one component T(Aj) is the sum of local thickness

computed for all 2× 2 tiles of the image:

T(Aj) =
∑

(α1..4)∈τ2×2(Aj)

4∏

i=1

4αi(1− αi) .

Fuzziness The inclusion of an overall fuzziness term allows better control

of the fuzziness in the resulting segmentation.

F(A) =
N∑

i=1

m∑

j=1

4αi,j(1− αi,j) .
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Different terms
- an illustrative example

a b c d

(a) Minimization of Data term alone (linear unmixing). (b) Minimization of Data and

Perimeter terms. (c) Minimization of Data and Fuzziness terms. (d) Minimization of

all the suggested energy terms.
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Minimization

The sought coverage segmentation A∗ is obtained by minimizing the

complete energy functional J over the set of valid coverage segmentations:

A
∗ = arg min

A∈AN×m

J(A).

A convex constrained large scale non-convex optimization problem.

Encouraged by good results obtained when addressing problems of similar

structure and dimensionality we decided to use the Spectral Projected

Gradient (SPG) method.

The SPG method requires differentiating the energy function J(A).
The partial derivative of J(A) w.r.t. an individual coverage value αi,j is

∂(J(A))

∂αi,j

=
∂(D(A))

∂αi,j

+ µ
∂(P(A))

∂αi,j

+ ν
∂(T(A))

∂αi,j

+ ξ
∂(F(A))

∂αi,j

.
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Minimization

All the included terms are either pixel-wise (data and fuzziness), or utilize

only a 2× 2 neighbourhood (perimeter and thickness terms). Therefore only

9 pixel values affect
∂(J(A))
∂αi,j

, making differentiation quite “manageable”.

The energy function J is, unfortunately, highly non-convex, and

minimization of J is far from trivial. Care has to be taken to not end up in a

sub-optimal local minimum of the energy function.

To reach as good as possible result, solutions of numerically easier

problems are used as starting guesses when addressing more difficult ones.

We initiate the process with a unmixing based on the data term alone. This

is followed by introduction of the perimeter term and an iterative part where

the weights of the two fuzziness regulating terms ν and ξ are gradually

increased.

The iteration continues until the Fuzziness of the solution is lower than twice

the Perimeter. This stopping criterion utilizes the fact that a correct

coverage representation typically fulfils this relation.
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Method 5: Algorithm

Alg. 1. Coverage segmentation

Parameters: µ, ν0, ξ0, ρ ≥ 0.

A0 =
[

1
m

]
N×m

; ν = ν0; ξ = ξ0;

A = arg min D(A0) by SPG;
repeat

A← arg min J(A; I,C, µ, ν, ξ) by SPG;
f = F(A)/(2P(A));
ν ← ν(1 + ρ · f );
ξ ← ξ(1 + ρ · f );

until f ≤ 1
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Qualitative evaluation

(a)

(b)

(c)

Segmentation result obtained by: (a) linear discriminant analysis, (b) fuzzy

c-means clustering, (c) the proposed method.
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Quantitative evaluation
- noise sensitivity
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Crisp, no noise

S & L (2009b)

Alg 1, µ = 0.5
Alg 1, µ = 5σ

Left: (top) Synthetic test objects. (middle) Part of object with 30% noise added.
(bottom) Coverage segmentation result for 30% noise. Right: Average absolute error
of coverage values of object border pixels for different noise levels. Lines show
averages for 50 observations and bars indicate max and min errors.
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Quantitative evaluation
- noise sensitivity
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Crisp, no noise

S & L (2009b)

Alg 1, µ = 0.5
Alg 1, µ = 5σ

Left: (top) Synthetic test objects. (middle) Part of object with 30% noise added.
(bottom) Coverage segmentation result for 30% noise. Right: Average absolute error
of coverage values of object border pixels for different noise levels. Lines show
averages for 50 observations and bars indicate max and min errors.
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Segmentation of hyperspectral data

• Test on a publicly available1 220 band hyperspectral data set from an

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

• The same data is used in Villa et al.2 allowing direct performance

comparison.

• Available ground truth classification is crisp. Approximate coverage

values are created by binning 3× 3 pixels into a lower resolved image.

• The 220 bands are highly correlated, making the Euclidean distance (in

the Data term) unsuitable as a distance measure. We therefore

decorrelate the data initially by a whitening transformation.

• For each class, 20 non-mixed pixels from the low resolution image are

randomly selected as training data. From these pixels the matrix C is

computed.

1
https://engineering.purdue.edu/~biehl/MultiSpec/

2 A. Villa et al. “Spectral unmixing for the classification of Hyperspectral images at a finer spatial
resolution.” IEEE J. Selected Topics Signal Proc. 5 (3), 512-533. 2011.

https://engineering.purdue.edu/~biehl/MultiSpec/
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(a) One band (30 out of 220) of a low
resolution image obtained by averag-
ing of 3×3 blocks in the original image
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(b) Ground truth for the high reso-
lution image, with unclassified pixels
presented in black
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(c) A coverage segmentation (into four
classes) of (a)
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(d) Crisp segmentation derived from
(c) at the same spatial resolution as (b)
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Quantitative evaluation of results

• The method of Villa et al. (2011) performs sub-pixel classification.

(SVM-based coverage segmentation is followed by spatial high

resolution assignment by means of simulated annealing optimization.)

• To compare our results, we generate two high resolution distributions of
coverage:

1 “Stupid” method: Perform crisp classification and scale up by a factor 3
2 Optimal method: Distribute the coverage to best match the ground truth

This provides lower and upper bounds of accuracy for a possible

sub-pixel assignment of the coverage values.

Accuracy [%] CPU time [s]

Villa et al.,2011 90.65 58 (88 incl. SA)

Proposed [92.59,94.74] 4.5
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Some application examples

1 Affine registration of digital X-ray and CT images utilizing improved
moments estimation

• A. Tanács, C. Domokos, N. Sladoje, J. Lindblad, and Z. Kato. Recovering affine
deformations of fuzzy shapes. SCIA 2009. LNCS-5575, pp. 735–744, 2009.

• A. Tanács, J. Lindblad, N. Sladoje, and Z. Kato. Estimation of linear deformations of
3D objects. ICIP 2010, IEEE, pp. 153-156, Hong Kong, 2010.

2 Histomorphometrical study from microscopy images, using coverage
representation and feature estimates.

• N. Sladoje, J. Lindblad. Pixel coverage segmentation for improved feature
estimation. ICIAP 2009. LNCS-5716, pp. 929-938 Vietri sul Mare, Italy, 2009.

3 Coverage segmentation of a CT image, followed by precise feature
estimates

• F. Malmberg, J. Lindblad, I. Nyström. Sub-pixel segmentation with the image
foresting transform, IWCIA 2009, LNCS- 5852, pp. 201-211, 2009.

• F. Malmberg, J. Lindblad, N. Sladoje, and I. Nyström. A Graph-based Framework for
Sub-pixel Image Segmentation. Theoretical Computer Science, Vol. 412, No. 15,
pp. 1338-1349, 2011
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Application 1 – Registration from moments
Affine registration of digital X-ray images of hip-prosthesis implants for

follow up examinations

Real X-ray registration results. (a) and (b) show full X-ray observation images and the
outlines of the registered template shapes. (c) shows a close up view of a third study
around the top and bottom part of the implant.
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Application 1 – Registration from moments
Affine registration of digital X-ray images of hip-prosthesis implants for

follow up examinations

Coverage values used for improved moments’ estimation in a registration

process.
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Registration results of 2000 synthetic images using different quantization

levels of the coverage representation.

ǫ =
1

m

∑

p∈T

∥∥∥(A− Â)p
∥∥∥ , and δ =

|R△ O|

|R|+ |O|
,
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Application 1 – Registration from moments
Same thing in 3D

Examples from the image database: template
objects (top) and their affine deformed
observations (bottom).

Table: Median error values for different
supersampling levels n.

n ǫ δ Time (sec)

1 0.0361 0.1555 1.54

2 0.0108 0.0627 1.56

4 0.0069 0.0470 1.54

8 0.0065 0.0402 1.52

Registration of pelvic CT data
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Application 2 – Contact length estimation
Histomorphometrical study from microscopy images

Measure bone implant integration for the purpose of evaluating new surface

coatings which are stimulating bone regrowth around the implant.

Local unmixing segmentation followed by area and boundary estimates.
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Application 2 – Contact length estimation
Histomorphometrical study from microscopy images

(a) (b) (c) (d) (e)

(a): The screw-shaped implant (black), bone (purple) and soft tissue (light grey). (b)
Part of a crisp (manual) segmentation of (a). (c) The set of re-evaluated pixels. (d) and
(e) Pixel coverage segmentations of the soft tissue and the bone region, respectively.

Result:

Approximately a 30% reduction of errors on average, as compared to

when using estimates from the crisp starting segmentation.
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Application 3 – Precise volume estimation
Coverage segmentation of CT data, followed by feature estimates

User assisted graph based segmentation of the spleen, for medical

diagnosis based on accurate feature estimates.

Result: 50% reduction of standard deviation of estimates, as compared to when

using estimates from the crisp starting segmentation.
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Application 3 – Precise volume estimation
Coverage segmentation of CT data, followed by feature estimates

User assisted graph based segmentation of the spleen, for

medical diagnosis based on accurate feature estimates.

Result: Assuming that the mean result is correct, more than 3

times reduction of the maximal error, as compared to when

using estimates from the crisp starting segmentation.

Visualization

improvement

Lateral ventricles
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Conclusions

• A number of coverage segmentation methods have been developed and

are shown to work well for estimating coverage values in noisy conditions

and for real imaging situation.

• The presented energy based coverage segmentaion method delivers fast

and accurate segmentation results under varying imaging conditions.

• The flexible energy minimization approach allows easy introduction of

additional terms and/or manipulation of existing ones, thereby simplifying

further development and adjustment to specific conditions.

The coverage model, including coverage segmentation, coverage

representation, and feature extraction provides:

• separation of imaging and analysis by the coverage segmentation step,

• preservation of object information in the coverage representation,

• high precision feature extraction and even super resolution reconstruction,

from the information rich coverage representation,

• reduction of discretization effects, more stable results with improved

rotation and translation invariance,

without making high level assumptions about topological properties, often

required in continuous models, and without the potentially difficult interpretation

of results from more unrestricted fuzzy approaches.


	Coverage segmentation
	Coverage segmentation by energy minimization
	Some application examples
	Conclusions

