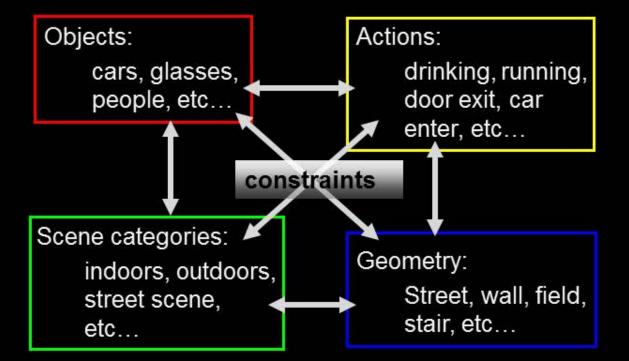


First Croatian Computer Vision Workshop (CCVW 2012) September 20-21, 2012, Zagreb, Croatia

Human action recognition: Recent progress, open questions and future challenges

Ivan Laptev *ivan.laptev@inria.fr* WILLOW, ENS/INRIA/CNRS, Paris

Computer vision grand challenge: Dynamic scene understanding



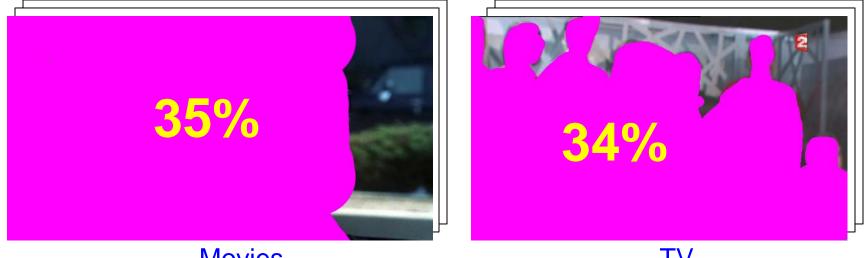
Why analyzing people and human actions?

How many person pixels are in video?

Movies

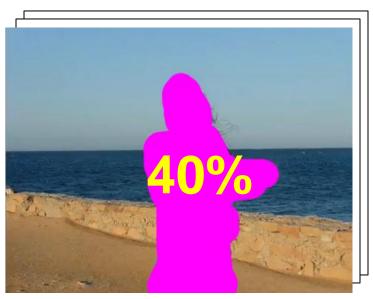
YouTube

How many person pixels are in video?



Movies

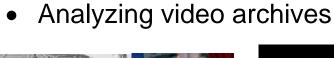
TV



YouTube

Applications

ina



First appearance of N. Sarkozy on TV

Sociology research: Influence of character smoking in movies

Education: How do I make a pizza?

Graphics

Motion capture and animation

Surveillence

Where is my cat?

Predicting crowd behavior Counting people

Technology: Access to lots of data

• Huge amount of video is available and growing

B B C Motion Gallery

TV-channels recorded since 60's

>34K hours of video uploads every day

~30M surveillance cameras in US => ~700K video hours/day

Why action recognition is hard?

- Need to process very large amounts of video data
- Need to deal with large appearance variations, many classes

Smoking

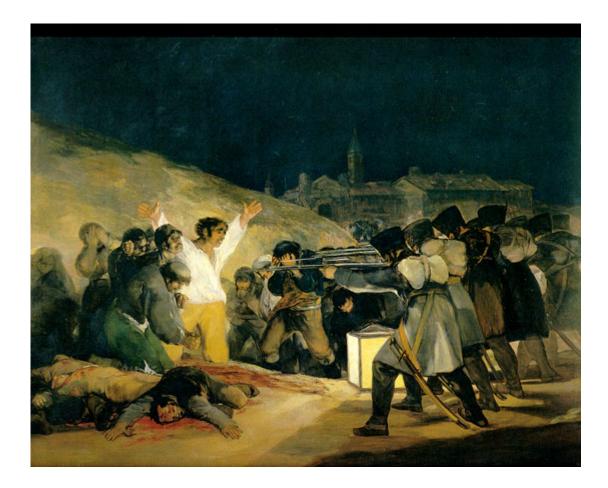
This talk:

Review of work on action recognition

Discussion: Do we ask the right questions?

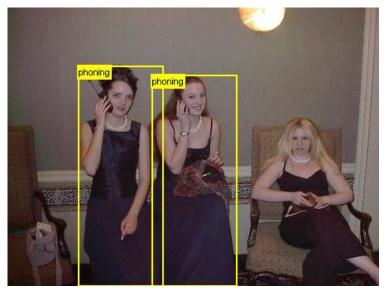
Our more recent work

Activities characterized by a pose



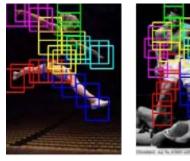
Slide credit: A. Zisserman

Activities characterized by a pose

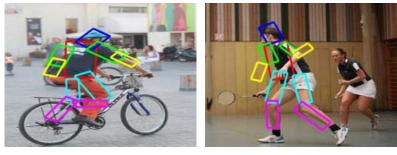


Slide credit: A. Zisserman

Human pose estimation



Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In Proc. **CVPR 2011** Extension of LSVM model of Felzenszwalb et al.

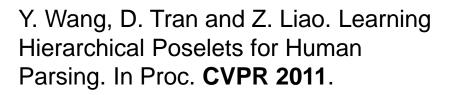


frame t+1

frame t

t+1

t+1



Builds on Poslets idea of Bourdev et al.

S. Johnson and M. Everingham. Learning Effective Human Pose Estimation from Inaccurate Annotation. In Proc. **CVPR 2011**.

Learns from lots of noisy annotations

B. Sapp, D.Weiss and B. Taskar. Parsing Human Motion with Stretchable Models. In Proc. **CVPR 2011**.

Explores temporal continuity

Pose estimation is still a hard problem

Issues: • occlusions

clothing and pose variations

Appearance-based methods: global shape

[A.F. Bobick and J.W. Davis, PAMI 2001] Idea: summarize motion in video in a *Motion History Image (MHI)*:

L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as spacetime shapes. 2007

Appearance-based methods: shape tracking

[Baumberg and Hogg, ECCV 1994]

Goal: Interpret complex dynamic scenes

Common problems:

Common methods:

 Segmentation using background model -> hard
Tracking using appearance model ->hard
Complex & changing BG
Changing appearance

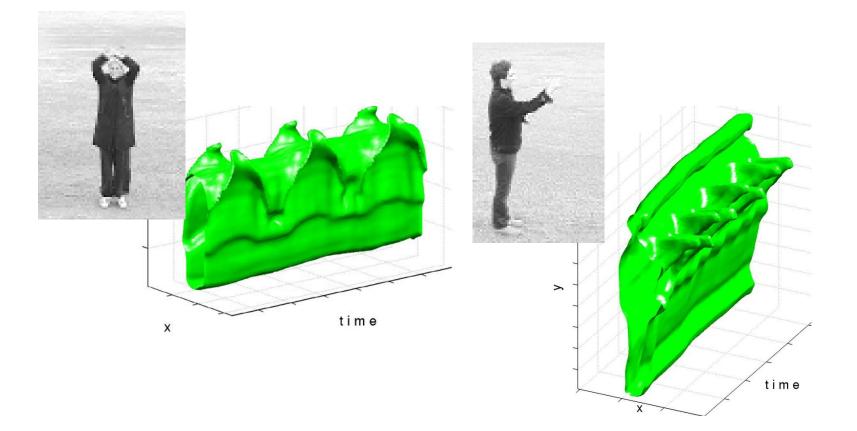
 \Rightarrow Global assumptions about the scene are unreliable

No global assumptions \Rightarrow Consider local spatio-temporal neighborhoods

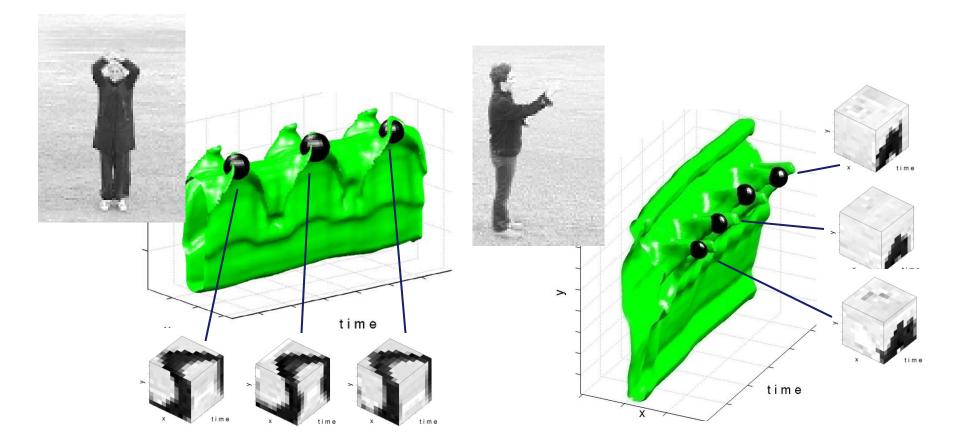
hand waving

boxing

Actions == Space-time objects?



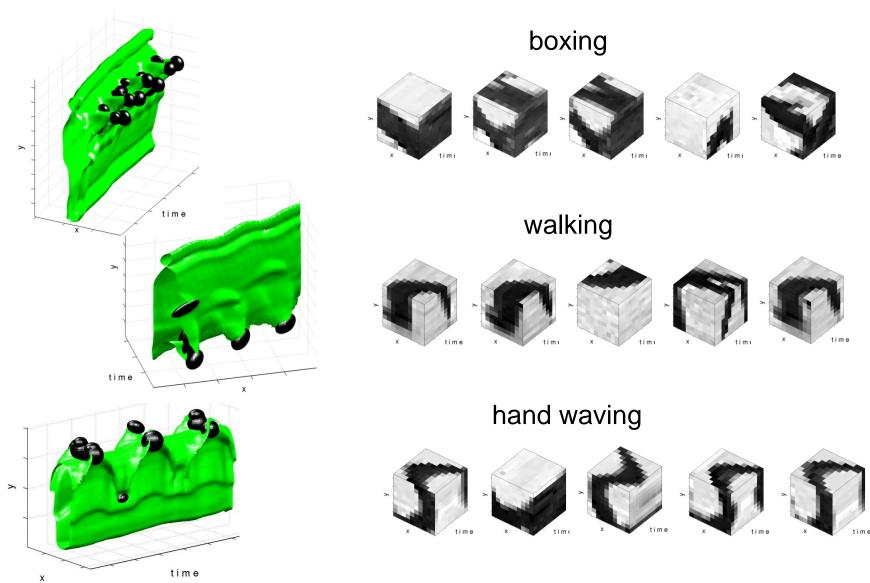
Space-time local features



Local approach: Bag of Visual Words

Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

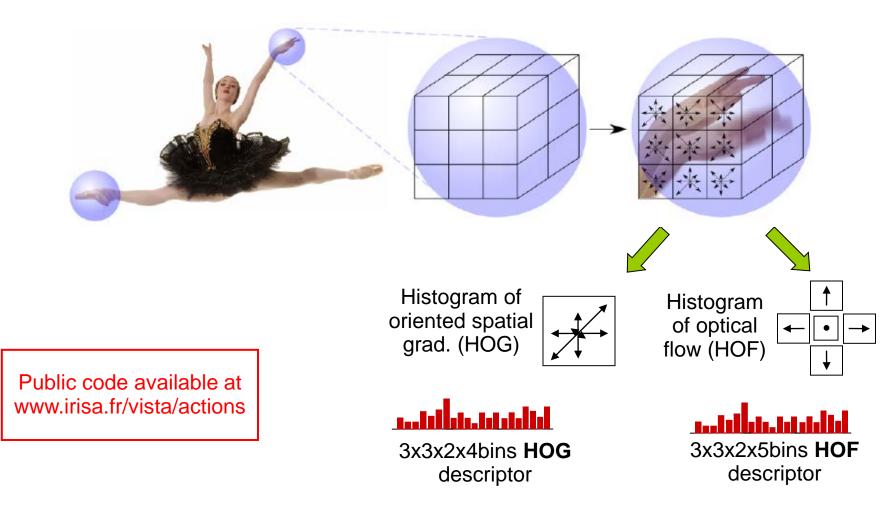
Local features for human actions



[Laptev 2005]

Local space-time descriptor: HOG/HOF

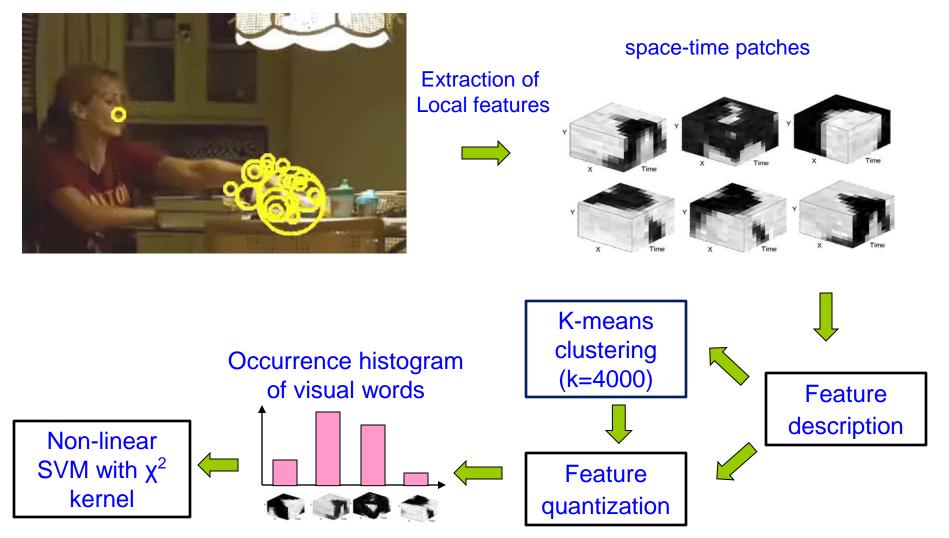
Multi-scale space-time patches



Local feature methods: Why working?

Finds similar events in pairs of video sequences

Bag-of-Features action recogntion



[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action classification in movies

Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade" [Laptev et al. CVPR2008]

Action classification results

DriveCar

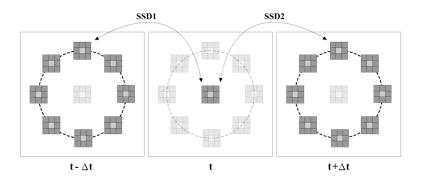
	hoghof		Chance
Channel	bof	flat	
mAP	47.9	50.3	9.2
AnswerPhone	15.7	20.9	7.2
DriveCar	86.6	84.6	11.5
Eat	59.5	67.0	3.7
FightPerson	71.1	69.8	7.9
GetOutCar	29.3	45.7	6.4
HandShake	21.2	27.8	5.1
HugPerson	35.8	43.2	7.5
Kiss	51.5	52.5	11.7
Run	69.1	67.8	16.0
SitDown	58.2	57.6	12.2
SitUp	17.5	17.2	4.2
StandUp	51.7	54.3	16.5

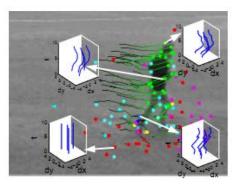
Average precision (AP) for Hollywood-2 dataset

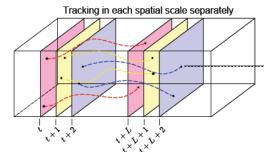
More recent local representations

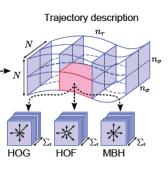
- Y. and L. Wolf, "Local Trinary Patterns for Human Action Recognition ", ICCV 2009 + ECCV 2012 extension
- P. Matikainen, R. Sukthankar and M. Hebert "Trajectons: Action Recognition Through the Motion Analysis of Tracked Features" ICCV VOEC Workshop 2009,

 H. Wang, A. Klaser, C. Schmid, C.-L. Liu, "Action Recognition by Dense Trajectories", CVPR 2011









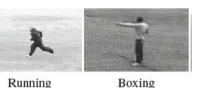
Dense trajectory descriptors

[Wang et al. CVPR'11]

KTH		YouTube		Hollywood2		UCF sports	
Laptev et al. [5]	91.8%	Liu et al. [45]	71.2%	Wang et al. [17]	47.7%	Wang et al. [17]	85.6%
Kovashka et al. [53]	94.53%	Ikizler-Cinbis et al.[35]	75.21%	Taylor et al. [58]	46.6%	Kläser et al. [59]	86.7%
Yuan et al. [60]	93.7%	Brendel et al. [51]	77.8%	Ullah <i>et al.</i> [43]	53.2%	Kovashka et al. [53]	87.27%
Le et al. [52]	93.9%	Le et al. [52]	75.8%	Gilbert et al. [61]	50.9%	Le et al. [52]	86.5%
Gilbert et al. [61]	94.5%	Bhattacharya et al. [62]	76.5%	Le et al. [52]	53.3%		
MBH	95.0%	MBH	80.6%	MBH	55.1%	MBH	84.2%
Combined	94.2%	Combined	84.1%	Combined	58.2%	Combined	88.0%
MBH+STP	95.3%	MBH+STP	83.0%	MBH+STP	57.6%	MBH+STP	84.0%
Combined+STP	94.4%	Combined+STP	85.4%	Combined+STP	59.9%	Combined+STP	89.1%
IXMAS		UIUC		Olympic Sports		UCF50	
Tran et al.[50]	80.22%	Tran et al. [50]	98.7%	Brendel et al. [56]	77.3%		
Junejo et al. [63]	79.6%			Niebles et al. [49]	72.1%		
Wu et al.[54]	88.2%						
MBH	91.8%	MBH	97.1%	MBH	71.6%	MBH	82.2%
Combined	93.5%	Combined	98.4%	Combined	74.1%	Combined	84.5%
MBH+STP	91.9%	MBH+STP	98.1%	MBH+STP	74.9%	MBH+STP	83.6%
Combined+STP	93.6%	Combined+STP	98.3%	Combined+STP	77.2%	Combined+STP	85.6%

Action recognition datasets

KTH Actions, 6 classes, 2391 video samples [Schuldt et al. 2004]



Running

Weizman, 10 classes, 92 video samples, [Blank et al. 2005]

- UCF YouTube, 11 classes, 1168 samples, [Liu et al. 2009]
- Hollywood-2, 12 classes, 1707 samples, [Marszałek et al. 2009]
- UCF Sports, 10 classes, 150 samples, [Rodriguez et al. 2008]
- Olympic Sports, 16 classes, 783 samples, [Niebles et al. 2010]
- HMDB, 51 classes, ~7000 samples, [Kuehne et al. 2011]
- PASCAL VOC 2011 Action Classification Challenge, 10 classes, 3375 image samples

Where to go next?

Is action classification the right problem?

• Is action vocabulary well-defined?

Examples of "Open" action:

What granularity of action vocabulary shall we consider?

Source: http://www.youtube.com/watch?v=eYdUZdan5i8

Do we want to learn person-throws-cat-into-trash-bin classifier?

Limitations of Current Methods

Next challenge

Shift the focus of computer vision

Object, scene and action recognition

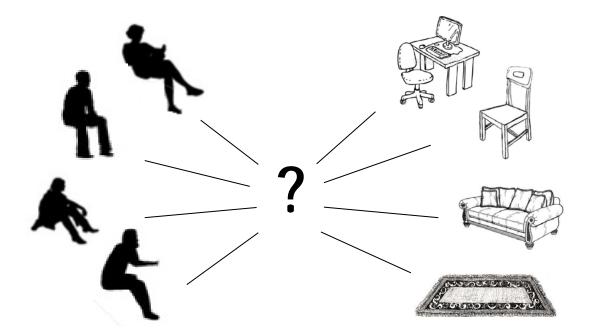
Recognition of objects' function and people's intentions

Is this a picture of a dog? Is the person running in this video? What people do with objects? How they do it? For what purpose?

Enable new applications

Motivation

• Exploit the link between human pose, action and object function.



• Use human actors as active sensors to reason about the surrounding scene.

Scene semantics from long-term observation of people

ECCV 2012

V. Delaitre, D. F. Fouhey, I. Laptev, J. Sivic, A. Gupta, A. Efros

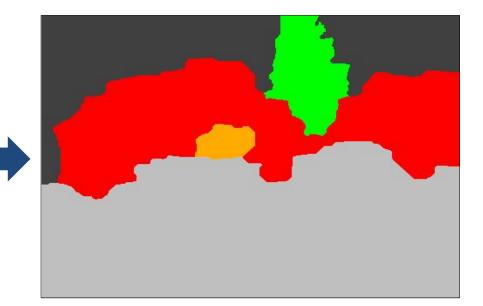
Goal

Recognize objects by the way people interact with them.

Time-lapse "Party & Cleaning" videos

Lots of person-object interactions, many scenes on YouTube

Semantic object segmentation



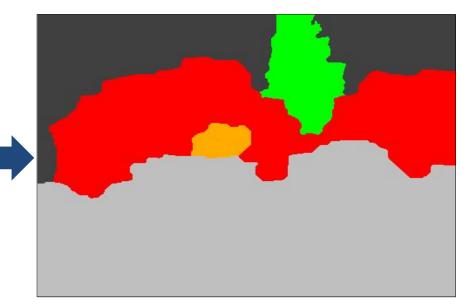
New "Party & Cleaning" dataset

Goal

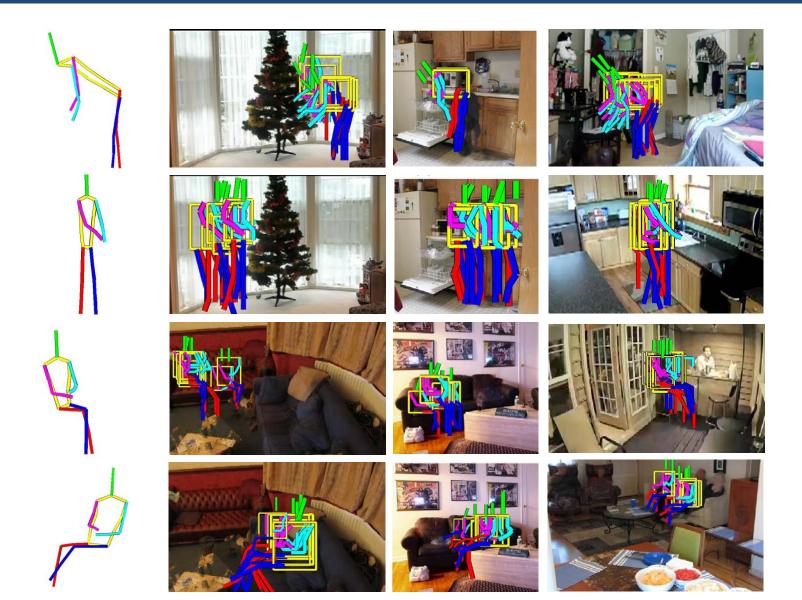
Recognize objects by the way people interact with them.

Time-lapse "Party & Cleaning" videos

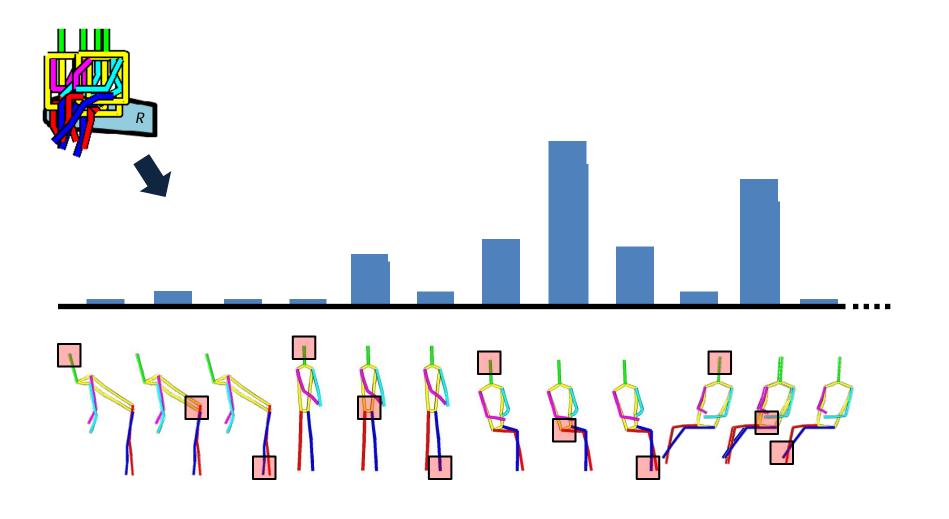
Lots of person-object interactions, many scenes on YouTube Semantic object segmentation



Pose vocabulary

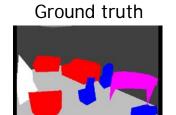


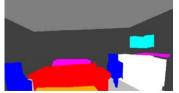
Pose histogram

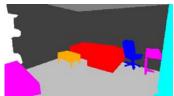


Some qualitative results

Background



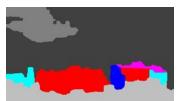




'A+P' soft segm.

'A+L' soft segm.

'A+P' hard segm.



Bed

Chair

CoffeeTable

Cupboard

SofaArmchair

Table

Other

Quantitative results

	DPM	Hedau	(A+L)	(P)	(A+P)	(A+L+P)
Wall		75 ± 3.9	76 ± 1.6	76 ± 1.7	82 ± 1.2	81 ±1.3
Ceiling		47 ± 20	53 ± 8.0	52 ± 7.4	69 ±6.7	$69{\pm}6.6$
Floor		59 ± 3.1	64 ± 5.5	65 ± 3.6	76 ±3.2	76 ± 2.9
Bed	31 ± 20	12 ± 7.2	14 ± 5.0	21 ± 5.8	27 ± 13	26 ± 13
Sofa/Armchair	26 ± 9.4	26 ± 10	34 ± 3.3	32 ± 6.5	$44{\pm}5.4$	43 ± 5.8
Coffee Table	11 ± 5.4	11 ± 5.2	11 ± 4.4	12 ± 4.3	17 ± 10	17 ± 9.6
Chair	9.5 ± 3.9	6.3 ± 2.8	8.3 ± 2.7	5.8 ± 1.4	11 ± 5.4	$12{\pm}5.9$
Table	15 ± 6.4	18 ± 3.8	17 ± 3.9	16 ± 7.1	22 ± 6.2	$22{\pm}6.4$
Wardrobe/Cupboard	27 ± 10	27 ± 8.2	28 ± 6.4	22 ± 1.1	36 ±7.4	$36{\pm}7.2$
Christmas tree	50 ± 3.3	55 ± 12	72 ± 1.8	$20{\pm}6.0$	76 ± 6.2	$77{\pm}5.5$
Other Object	12 ± 6.4	11 ± 1.2	7.9 ± 1.9	13 ± 4.2	16 ± 8.3	16 ± 8.2
Average	23 ± 1.8	31 ± 2.0	35 ± 2.4	$30{\pm}1.7$	43 ±4.4	43 ±4.3

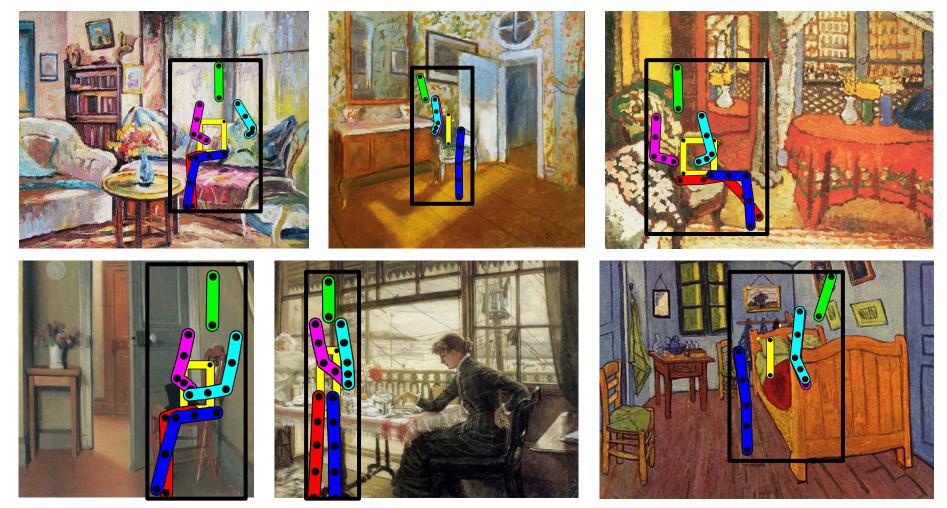
- A: Appearance (SIFT) histograms;
- L: Location;
- P: Pose histograms

Hedau: Hedau et al., Recovering the spatial layout of cluttered rooms. In: ICCV. (2009)

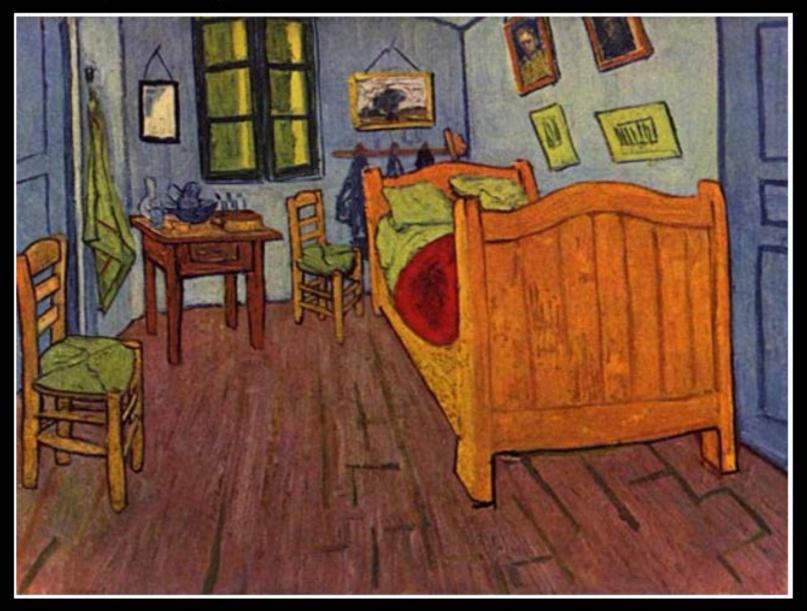
DPM: Felzenszwalb et al., Object detection with discriminatively trained part based models. PAMI (2010)

Using our model as pose prior

Given a bounding box and the ground truth segmentation, we fit the pose clusters in the box and score them by summing the joint's weight of the underlying objects.



Input image



Conclusions

- BOF methods give state-of-the-art results for action recognition in realistic data. Better models are needed
- Action classification (and temporal action localization) are often ill-defined problems
- Targeting more realistic problems with functional models of objects and scenes can be the next challenge.

