Image Processing Group: Research Activities in Medical Image Analysis

Sven Lončarić Faculty of Electrical Engineering and Computing University of Zagreb http://www.fer.unizg.hr/ipg

Image Processing Group Members

- Marko Subašić, Assistant Professor
- Tomislav Petković, postdoctoral fellow
- Hrvoje Kalinić, doctoral student
- Vedrana Baličević, doctoral student
- Adam Hedi, former graduate student
- Hrvoje Bogunović, former graduate student
- Tomislav Devčić, former graduate student

IPG members sailing on Adriatic coast, 2006

6th Int'l Symposium on Image and Signal Processing and Analysis September 4-6, 2011, Dubrovnik, Croatia

Medical image analysis projects

- Some example projects:
 - Aortic outflow velocity Doppler ultrasound image analysis
 - Detection and tracking of catheter for intravascular interventions
 - 3-D analysis of abdominal aortic aneurysm
 - 3-D analysis of intracerebral brain hemorrhage
 - Virtual endoscopy

Aortic outflow velocity profile analysis

• Partners:

- Hrvoje Kalinić, Sven Lončarić, FER
- Maja Čikeš, Davor Miličić, University Hospital Rebro
- Bart Bijnens, Pompeu Fabra University Barcelona

Aortic outflow velocity analysis method

Aortic outflow velocity profile

Atlas-based segmentation

Atlas-based segmentation

CAD negative

No evidence of CAD, negative DSE

Asymmetric curve

Severe CAD

Typical broadening with a much more rounded shape and later peak Severe CAD, positive DSE

- Prolonged T_{mod}/ET_{mod}
- Prolonged t_{rise}
- Shortened t_{fall}
- Symmetric curve

Real-Time Guidewire Tracking

- Project team:
 - Sven Lončarić, Tomislav Petković, Tomislav Devčić, University of Zagreb
 - Draženko Babić, Robert Homan, Philips Healthcare

PHILIPS

Problem statement

- Automated guidewire tracking system should provide the surgeon with the information about 3D guidewire position in real-time during the intravascular intervention.
- If possible the simplest monoplane X-ray imaging device should be used.
- Develop smart software to extend usability of existing expensive hardware

Achieved results

- A prototype system was developed
- Processing time is about 100 ms per image of 1024x1024 with 16 bits resolution
- Reconstruction from single image is possible, but yields many ambiguous solutions
- Reconstruction from two views (biplane) is also ambiguous

System overview (monoplane reconstruction)

- 3D position reconstruction is desirable
- Ambiguous solutions exist due to the projective nature of imaging device
- All viable solutions are found and most probable one is selected as reconstruction result
- Fast minimization algorithms are required due to real-time constraints

Software demonstration

Abdominal Aortic Aneurysm (AAA)

- Project on AAA segmentation from CT images
- Partners:
 - Marko Subašić, Sven Lončarić, University of Zagreb
 - Erich Sorantin, Medical University Graz, Austria

Abdominal Aortic Aneurysm (AAA)

- Enlargement of abdominal aorta due to weakened aortic wall
- Enlargement of aorta can lead to aortic wall rapture
- Imaging of AAA is very important in condition assessment

Abdominal aorta

With aneurysm

AAA segmentation method

- Abdominal volume CT input data
- Manual segmentation??

Geometric deformable model

- Ability to change topology: break and merge
- Easy to build numerical approximation of equations of motion
- Straightforward expansion to higher dimensions 3-D, 4-D ...
- Level-set algorithm

The problem

- Two regions of interest:
- 1. Aortic interior
 - Good image conditions not a difficult task
- 2. Aortic wall
 - Poor image conditions on outer aortic border – a more difficult task
 - Calcification: a sediment of calcium inside aortic wall
 - Barely visible outer aortic border

Deformable model for AAA

spiral

CT

Results

	relative error [%]	standard deviation [%]
<u>automatic level-set</u> (corrected automatic segmentation results)	14.71	8.17
<u>automatic level-set</u> (corrected semi-automatic segmentation)	19.75	13.28
corrected automatic segmentation (corrected semi-automatic segmentation)	<u>12.35</u>	13.92

ICH segmentation from CT images

- Project: Segmentation of intracerebral brain hemorrhage from CT images
- Goal: quantitative analysis of hematoma and edema
- Partners:

- University of Cincinnati Medical Center, USA

University of Zagreb

Expert system segmentation

- Segmentation by clustering breaks image into small regions
- Expert system has knowledge about size, shape and neighborhood relations between regions and uses this knowledge for region labeling
- Labels: hematoma, edema, brain, skull, background

Experimental results

CT brain image

Segmented regions: background, skull, brain, hematoma

Artificial neural networks

- Can be used for analysis of biomedical images
- Block diagram shows alternative methods for ICH image analysis

Artificial neural networks

- ANNs can be used as classifiers
- Receptive field

Results

input image

segmented regions

labeled regions

Virtual endoscopy

- Virtualna endoskopija provodi se:
 - 3-D imaging of human body (CT, MR)
 - image analysis to determine organ position
 - patient-specific 3-D model for interactive exploration
- Advantages of virtual endoscopy:
 - less invasive then classical endoscopy
 - Unlimited moving and positioning of virtual endoscope
 - fly-through and interactive 3-D visualizations
- Examples: virtual colonoscopy, virtual bronchoscopy, colon "unwrapping"

Virtual bronchoscopy

- 3D modeling of organs
- Fly-through simulations

Conclusion

- Computerized medical imaging and image processing can aid clinical research, diagnostics, and intervention
- Interdisciplinary projects require interdisciplinary teams: doctors and engineers
- Computer: A tool for quantitative measurements of organ morphology and function

Thank you for your attention

Contact: Professor Sven Lončarić

Faculty of Electrical Engineering and Computing Department for Electronic Systems and Information Processing Image Processing Group E-mail: sven.loncaric@fer.hr WWW: http://ipg.zesoi.fer.hr Office phone: +385-1-6129-891

